|
import streamlit as st |
|
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification |
|
|
|
st.title("Sentiment Analysis App - beta") |
|
st.header("This app is to analyze the sentiments behind a text. Currently it uses \ |
|
pre-trained models without fine-tuning.") |
|
|
|
user_input = st.text_input("Enter your text:", value="Missing Sophie.Z...") |
|
user_model = st.selectbox("Please select a model:", |
|
("distilbert-base-uncased-finetuned-sst-2-english", |
|
"cardiffnlp/twitter-roberta-base-sentiment", |
|
"finiteautomata/bertweet-base-sentiment-analysis")) |
|
|
|
def analyze(model_name, text): |
|
model = AutoModelForSequenceClassification.from_pretrained(model_name) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
classifier = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer) |
|
return classifier(text) |
|
|
|
|
|
if st.button("Analyze"): |
|
if not user_input: |
|
st.write("Please enter a text.") |
|
else: |
|
with st.spinner("Hang on.... Analyzing..."): |
|
st.write(analyze(user_model, user_input)) |
|
else: |
|
st.write("Go on! Try the app!") |