Spaces:
Running
Running
File size: 1,082 Bytes
bdf7636 3469da9 bdf7636 32eb862 bdf7636 32eb862 bdf7636 32eb862 bdf7636 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
import json
import gradio as gr
from transformers import pipeline, AutoTokenizer, AutoModelForTokenClassification
tokenizer = AutoTokenizer.from_pretrained("d4data/biomedical-ner-all")
model = AutoModelForTokenClassification.from_pretrained("d4data/biomedical-ner-all")
EXAMPLE_TEXTS = []
with open("examples.json", "r") as f:
example_json = json.load(f)
EXAMPLE_TEXTS = [x["text"] for x in example_json]
pipe = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple")
def ner(text):
raw = pipe(text)
result = {
"text": text,
"entities": [
{
"entity": x["entity_group"],
"word": x["word"],
"score": x["score"],
"start": x["start"],
"end": x["end"],
}
for x in raw
],
}
return result, {}
interface = gr.Interface(
ner,
inputs=gr.Textbox(label="Input", value=""),
outputs=[gr.HighlightedText(combine_adjacent=True), "json"],
examples=EXAMPLE_TEXTS,
)
interface.launch()
|