File size: 1,539 Bytes
c4f4968
 
 
 
 
 
 
 
 
 
ada792a
c4f4968
086b4de
c4f4968
 
 
 
2485c35
c4f4968
 
 
637a8ee
c4f4968
 
 
 
 
 
 
 
63a9cb3
 
c4f4968
 
 
 
 
 
 
 
 
 
63a9cb3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import transformers
from transformers import BloomForCausalLM
from transformers import BloomTokenizerFast
import torch
import gradio as gr

# setting device on GPU if available, else CPU
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(device)

model_name = "bigscience/bloom-1b1"

model = BloomForCausalLM.from_pretrained(model_name)
tokenizer = BloomTokenizerFast.from_pretrained(model_name)

# Define the pipeline for Gradio purpose

def beam_gradio_pipeline(prompt,length=100):

   result_length = length

   inputs = tokenizer(prompt, return_tensors="pt").to(device)

   return tokenizer.decode(model.generate(inputs["input_ids"],
                       max_length=result_length, 
                       num_beams=2, 
                       no_repeat_ngram_size=2,
                       early_stopping=True
                      )[0])

with gr.Blocks() as web:
  gr.Markdown("<h1><center>Andrew Lim Bloom Test </center></h1>")
  gr.Markdown("""<h2><center>Generate your story with a sentence or ask a question:<br><br>
 <img src=https://aeiljuispo.cloudimg.io/v7/https://s3.amazonaws.com/moonup/production/uploads/1634806038075-5df7e9e5da6d0311fd3d53f9.png?w=200&h=200&f=face width=200px></center></h2>""")
  gr.Markdown("""<center>******</center>""")
  

  input_text = gr.Textbox(label="Prompt", lines=6)  
  buton = gr.Button("Submit ")  
  output_text = gr.Textbox(lines=6, label="The story start with :")
  buton.click(beam_gradio_pipeline, inputs=[input_text], outputs=output_text)  
   
web.launch()