Spaces:
Running
Running
Cositas
Browse files
app.py
CHANGED
@@ -1,7 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
demo = gr.Interface(fn=greet, inputs=["image","text"], outputs="text")
|
7 |
demo.launch()
|
|
|
1 |
+
from PIL import Image
|
2 |
+
import requests
|
3 |
+
|
4 |
+
import torch
|
5 |
+
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
import gradio as gr
|
10 |
|
11 |
+
from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation
|
12 |
+
|
13 |
+
processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
|
14 |
+
model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined")
|
15 |
+
|
16 |
+
def visualize_segmentation(image, prompts, preds):
|
17 |
+
_, ax = plt.subplots(1, len(prompts) + 1, figsize=(3*(len(prompts) + 1), 4))
|
18 |
+
[a.axis('off') for a in ax.flatten()]
|
19 |
+
ax[0].imshow(image)
|
20 |
+
[ax[i+1].imshow(torch.sigmoid(preds[i][0])) for i in range(len(prompts))];
|
21 |
+
[ax[i+1].text(0, -15, prompt) for i, prompt in enumerate(prompts)];
|
22 |
+
|
23 |
+
|
24 |
+
def segment(img, clases):
|
25 |
+
prompts = clases.split(',')
|
26 |
+
|
27 |
+
inputs = processor(text=prompts, images=[image] * len(img), padding="max_length", return_tensors="pt")
|
28 |
+
|
29 |
+
with torch.no_grad():
|
30 |
+
outputs = model(**inputs)
|
31 |
+
preds = outputs.logits.unsqueeze(1)
|
32 |
+
|
33 |
+
|
34 |
+
|
35 |
+
return "Hello " + prompts + "!!"
|
36 |
|
37 |
demo = gr.Interface(fn=greet, inputs=["image","text"], outputs="text")
|
38 |
demo.launch()
|