PlantVillage / app.py
amirkhanbloch's picture
Update app.py
eed1162 verified
raw
history blame
2.08 kB
import streamlit as st
import cv2
import numpy as np
import tensorflow as tf
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing.image import img_to_array
from PIL import Image
# Load the pre-trained model
model = load_model('plant_diseases.h5')
# Class labels (replace with your own classes)
class_labels = [
'Piment: Bacterial_spot',
'Piment: healthy',
'Pomme de terre: Early_blight',
'Pomme de terre: Late_blight',
'Pomme de terre: Healthy',
'Tomate: Bacterial Spot',
'Tomate: Early Blight',
'Tomate: Late Blight',
'Tomate: Leaf mold',
'Tomate: Septoria leaf spot',
'Tomate: Spider mites',
'Tomate: Spot',
'Tomate: Yellow Leaf Curl',
'Tomate: Virus Mosaïque',
'Tomate: Healthy'
]
def preprocess_image(image, image_size=(224, 224)):
# Convert image to grayscale
image = np.array(image.convert('L'))
# Resize image
image = cv2.resize(image, image_size)
# Prepare image for the model
image = img_to_array(image)
image /= 255.0
image = np.expand_dims(image, axis=0)
return image
# Streamlit app setup
st.title("Classification des Maladies des Plantes")
st.write("Téléchargez une image de plante pour la classification")
uploaded_file = st.file_uploader("Choisissez une image...", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
# Display the uploaded image
image = Image.open(uploaded_file)
st.image(image, caption='Image téléchargée', use_column_width=True)
st.write("Classification en cours...")
# Preprocess the image
processed_image = preprocess_image(image)
# Make predictions
predictions = model.predict(processed_image)
probabilities = predictions[0]
# Display probabilities for each class
for i, label in enumerate(class_labels):
if probabilities[i] > 0:
st.write(f"{label}: {probabilities[i]:.2f}")
# Show predicted class
predicted_class = class_labels[np.argmax(probabilities)]
st.write(f"Classe prédite: {predicted_class}")