import gradio as gr from transformers import pipeline from rdkit import Chem from rdkit.Chem import AllChem from rdkit.Chem.Draw import rdMolDraw2D from rdkit.Chem import rdDepictor import base64 from io import BytesIO import py3Dmol import re # Function to generate literature and 3D molecule view def drug_discovery(disease, symptoms): # BioGPT pipeline bio_gpt = pipeline("text-generation", model="microsoft/BioGPT-Large") prompt = f"Recent treatments for {disease} with symptoms: {symptoms}." literature = bio_gpt(prompt, max_length=200)[0]['generated_text'] # Generate SMILES using BioGPT with stricter filtering molecule_prompt = f"List 5 different valid drug-like SMILES strings that can treat {disease} with symptoms {symptoms}. Only list SMILES separated by spaces." smiles_result = bio_gpt(molecule_prompt, max_length=100)[0]['generated_text'] # Extract and validate SMILES strings smiles_matches = re.findall(r"(? 2D Molecule
๐Ÿ’Š Visualized Drug Molecule (2D)
''' # 3D molecule mol3d = Chem.AddHs(mol) AllChem.EmbedMolecule(mol3d) AllChem.UFFOptimizeMolecule(mol3d) mb = Chem.MolToMolBlock(mol3d) viewer = py3Dmol.view(width=420, height=420) viewer.addModel(mb, "mol") viewer.setStyle({"stick": {"colorscheme": "cyanCarbon"}}) viewer.setBackgroundColor("black") viewer.zoomTo() viewer.spin(True) viewer_html_raw = viewer._make_html() viewer_html = f'''
๐Ÿงฌ Animated 3D Molecule (Stick View)
''' return literature, smiles, img_html, viewer_html # Gradio UI disease_input = gr.Textbox(label="๐Ÿฅ Enter Disease (e.g., lung cancer)", value="lung cancer") symptom_input = gr.Textbox(label="๐Ÿ’‰ Enter Symptoms (e.g., cough, weight loss)", value="shortness of breath, weight loss") lit_output = gr.Textbox(label="๐Ÿ“ฐ Literature Insights from BioGPT") smiles_output = gr.Textbox(label="๐Ÿงช SMILES Representation") img_output = gr.HTML(label="๐Ÿ–ผ๏ธ Molecule 2D Visualization") viewer_output = gr.HTML(label="๐Ÿ”ฌ 3D Drug Molecule Animation") custom_css = """ @keyframes fadeIn { from {opacity: 0;} to {opacity: 1;} } @keyframes slideUp { from {transform: translateY(40px); opacity: 0;} to {transform: translateY(0); opacity: 1;} } @keyframes zoomIn { from {transform: scale(0.5); opacity: 0;} to {transform: scale(1); opacity: 1;} } body { background: linear-gradient(to right, #0f2027, #203a43, #2c5364); color: #eeeeee; font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; } .gradio-container { animation: fadeIn 1.5s ease-in-out; } .gradio-container .block-label { color: #ffffff; } """ iface = gr.Interface( fn=drug_discovery, inputs=[disease_input, symptom_input], outputs=[lit_output, smiles_output, img_output, viewer_output], title="๐Ÿฅ AI-Powered Drug Discovery for Hospitals", description="This hospital-themed platform takes a disease and symptoms as input, retrieves biomedical insights using BioGPT, and visualizes potential drug molecules in 2D and animated 3D. Ideal for clinical research and pharma innovation.", theme="default", css=custom_css ) iface.launch(share=True)