pl-asr-survey / app.py
mj-new
Alpha version of the dataset catalog
d5cbb7a
raw
history blame
5.55 kB
import pandas as pd
import streamlit as st
from app_utils import filter_dataframe, calculate_height_to_display
from contants import WELCOME_TEXT, CITATION_TEXT
from utils import BASE_SUMMARY_METRICS
from utils import load_catalog, load_taxonomy
from utils import datasets_count_and_size, datasets_count_and_size_standard, metadata_coverage, catalog_summary_statistics
import matplotlib.pyplot as plt
import seaborn as sns
st.set_page_config(layout="wide")
st.title("Polish Speech Datasets Catalog and Survey analysis")
st.write(WELCOME_TEXT)
st.write(CITATION_TEXT)
# Cache the dataframe so it's only loaded once
df_cat = load_catalog()
df_tax = load_taxonomy()
# Filter out non available datasets
df_cat_available = df_cat[df_cat['Available online'] == 'yes']
# Available and free
df_cat_available_free = df_cat[(df_cat['Available online'] == 'yes') & (df_cat['Price - non-commercial usage'] == 'free')]
# Available and paid
df_cat_available_paid = df_cat[(df_cat['Available online'] == 'yes') & (df_cat['Price - non-commercial usage'] != 'free')]
# Display catalog contents
st.dataframe(filter_dataframe(df_cat), hide_index=True, use_container_width=True)
# Display taxonomy contents
# Display summary statistics
st.header("Polish ASR speech datasets summary statistics")
df_summary_metrics = catalog_summary_statistics(df_cat)
df_basic_stats = df_summary_metrics.loc[BASE_SUMMARY_METRICS[0:5]]
st.dataframe(df_basic_stats, use_container_width=False)
st.header("Speech data available across Polish ASR speech datasets")
df_stats_audio_available = df_summary_metrics.loc[BASE_SUMMARY_METRICS[5:10]]
st.dataframe(df_stats_audio_available, use_container_width=False)
st.header("Transcribed data available across Polish ASR speech datasets")
df_stats_transcribed_available = df_summary_metrics.loc[BASE_SUMMARY_METRICS[10:15]]
st.dataframe(df_stats_transcribed_available, use_container_width=False)
# Display distribution of datasets created per year
st.header("Polish ASR speech datasets created in 1997-2023")
col_groupby = ['Creation year']
df_datasets_per_speech_type = datasets_count_and_size(df_cat, col_groupby, col_sort=col_groupby, col_percent=None, col_sum=['Size audio transcribed [hours]','Audio recordings', 'Speakers'], col_count = ['Dataset ID'])
st.dataframe(df_datasets_per_speech_type, use_container_width=False)
st.header("Institutions contributing Polish ASR speech dataset")
col_groupby = ['Publisher']
df_datasets_per_publisher = datasets_count_and_size(df_cat, col_groupby, col_sort='Count Dataset ID', col_percent=None, col_sum=['Size audio transcribed [hours]','Audio recordings', 'Speakers'], col_count = ['Dataset ID'])
st.dataframe(df_datasets_per_publisher, use_container_width=False)
st.header("Repositories hosting Polish ASR speech datasets")
col_groupby = ['Repository']
df_datasets_per_repo = datasets_count_and_size(df_cat, col_groupby, col_sort='Count Dataset ID', col_percent=None, col_sum=['Size audio transcribed [hours]','Audio recordings', 'Speakers'], col_count = ['Dataset ID'])
st.dataframe(df_datasets_per_repo, use_container_width=False)
st.header("Public domain Polish ASR speech datasets")
col_groupby = ['License', "Dataset ID"]
df_datasets_public = datasets_count_and_size(df_cat_available_free, col_groupby, col_sort='License', col_percent=None, col_sum=['Size audio transcribed [hours]','Audio recordings', 'Speakers'], col_count = [])
st.dataframe(df_datasets_public, use_container_width=False)
st.header("Commercialy available Polish ASR speech datasets")
col_groupby = ['License', "Dataset ID"]
df_datasets_paid = datasets_count_and_size(df_cat_available_paid, col_groupby, col_sort='License', col_percent=None, col_sum=['Size audio transcribed [hours]','Audio recordings', 'Speakers'], col_count = [])
st.dataframe(df_datasets_paid, use_container_width=False)
st.header("Coverage of metadata across Polish ASR speech datasets")
df_meta_all_flat, df_meta_all_pivot = metadata_coverage(df_cat, df_cat_available_free, df_cat_available_paid)
st.dataframe(df_meta_all_pivot, use_container_width=False)
# Display distribution of datasets for various speech types
st.header("Datasets per speech type")
col_groupby = ['Speech type']
df_datasets_per_speech_type = datasets_count_and_size(df_cat, col_groupby, col_sort=col_groupby, col_percent = ['Size audio transcribed [hours]'], col_sum = ['Size audio transcribed [hours]','Audio recordings', 'Speakers'], col_count = ['Dataset ID'])
st.dataframe(df_datasets_per_speech_type, use_container_width=False)
# Display distribution of datasets for various speech types
st.header("Distribution of available speech data per audio device - Public domain datasets")
col_groupby = ['Audio device']
df_datasets_per_device = datasets_count_and_size(df_cat_available_free, col_groupby, col_sort=col_groupby, col_percent = ['Size audio transcribed [hours]'], col_sum = ['Size audio transcribed [hours]','Audio recordings', 'Speakers'], col_count = ['Dataset ID'])
st.dataframe(df_datasets_per_device, use_container_width=False)
# Display distribution of datasets for various speech types
st.header("Distribution of available speech data per audio device - Commercial datasets")
col_groupby = ['Audio device']
df_datasets_per_device = datasets_count_and_size(df_cat_available_paid, col_groupby, col_sort=col_groupby, col_percent = ['Size audio transcribed [hours]'], col_sum = ['Size audio transcribed [hours]','Audio recordings', 'Speakers'], col_count = ['Dataset ID'])
st.dataframe(df_datasets_per_device, use_container_width=False)