File size: 13,578 Bytes
6278909
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
import streamlit as st
import torch
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

from transformers import pipeline
pipe = pipeline("text-classification", model="distilbert-base-uncased")  # 67MB vs BERT's 440MB

classifier = pipeline("text-classification", model="distilbert-base-uncased-finetuned-sst-2-english")

import time
from datetime import datetime

@st.cache_data
def load_model():
    return pipeline("text-classification", model="distilbert-base-uncased")  # Cached after first run


# from transformers import pipeline
# pipe = pipeline('text-generation', model='gpt2', device=0 if torch.cuda.is_available() else -1)

# from transformers import pipeline
# classifier = pipeline("text-classification", model="distilbert-base-uncased", device="cpu")  # Faster init

#########

# import os
# from fastapi import FastAPI
# from fastapi.middleware.wsgi import WSGIMiddleware
# from streamlit.web.server import Server

# app = FastAPI()
# app.mount("/", WSGIMiddleware(Server._get_app().wsgi_app))

# @app.get("/health")
# def health_check():
#     return {"status": "healthy"}

# if os.getenv("STREAMLIT_CLOUD"):
#     import uvicorn
#     uvicorn.run(app, host="0.0.0.0", port=8501)

# @st.cache_resource(ttl=3600, max_entries=3)
# def load_model():
#  return pipeline('text-generation', model='gpt2')  # Use smaller models

########## health check for server

# 1. APP CONFIGURATION ================================================
st.set_page_config(
    page_title="Counselor Guidance Assistant",
    page_icon="🧠",
    layout="centered",
    initial_sidebar_state="expanded"
)

# 2. CUSTOM STYLING ==================================================
st.markdown("""
<style>
 :root {
  --primary_clr: #43a573;
  --secondary: #f8f9fa;
  --font_clr: #1a1a1a;
  --bg_clr: #e9f5ef;
  --bg_clr_g2: #d9ede3;
  --bg_clr_g3: #1b422e;
  --border_clr: #1b422e;


  /* Dark Mode Overrides */
  --dark-primary: #43a573;
  --dark-secondary: #2d3748;
  --dark-font: #e2e8f0;
  --dark-bg: #1a202c;
  --dark-bg2: #2d3748;
  --dark-bg3: #38a169;
  --dark-border: #4a5568;
 }



 * {
  box-sizing: border-box;
 }

 html,body {
  font-family: sans-serif;
  line-height: 1.5;
  -webkit-text-size-adjust: 100%;
  -ms-text-size-adjust: 100%;
  -ms-overflow-style: scrollbar;
  -webkit-tap-highlight-color: transparent;
  margin:0;
  height: 100%;
  color: var(--font_clr);
  background-color: var(--bg_clr)
 }

 @-ms-viewport {
 width: device-width;
 }

 .stAppHeader, .stMain{
  background-color: var(--bg_clr)
 }

 .stSidebar{
  background-color: var(--bg_clr_g2);
 }

  .stTextArea textarea, .stTextArea > textarea {
  min-height: 250px;
  font-size: 16px;
  background-color: var(--bg_clr_g2);
  border-color: var(--border_clr);
  resize: none;
 }

 .responseCard {
  background-color: var(--bg_clr);
  border-radius: 10px;
  padding: 1.5rem;
  margin: 1rem 0;
  border-left: 4px solid var(--primary_clr);
 }
 
 .stButton button, .stButton > button {
  background-color: var(--primary_clr);
  color: white;
  transition: all 0.3s;
  border: 1px solid var(--border_clr);
 }
 
 .stButton button:hover, .stButton button:focus:not(:active) {
  opacity: 0.9;
  transform: translateY(-1px);
  color: white;
  background-color: var(--bg_clr_g3);
  border: 1px solid var(--border_clr);
 }

 /*
 .stSlider [role="slider"]{
  background-color: var(--bg_clr_g3);
 }

 .stSlider [role="slider"] .st-an, .stSlider [role="slider"] .st-ap, .stSlider [role="slider"] .st-aq,
 .stSlider [role="slider"] .st-ao, .stSlider [role="slider"] .st-cu, .stSlider [role="slider"] .st-cv,
 .stSlider [role="slider"] .st-am, .stSlider [role="slider"] .st-cw, .stSlider [role="slider"] .st-cx{
  background: linear-gradient(to right, rgb(27, 66, 46) 0%, 
  rgb(27, 66, 46) 72.2222%,
  rgba(151, 166, 195, 0.25) 72.2222%,
  rgba(151, 166, 195, 0.25) 100%) !important;
 }*/

 
 .progress-container {
  margin-top: -10px;
  margin-bottom: 15px;
 }

 summary[class*="st-emotion-cache-"]:hover{
  font-weight:800;
  color: var(--font_clr);
 }
 
 .crisis-alert {
  background-color: #fff8f8;
  border-left: 5px solid #ff4b4b;
  padding: 1.5rem;
  margin: 1rem 0;
  border-radius: 0 8px 8px 0;
  box-shadow: 0 2px 8px rgba(255, 75, 75, 0.15);
  animation: pulse 2s infinite;
 }
 
 @keyframes pulse {
  0% { border-left-color: #ff4b4b; }
  50% { border-left-color: #ff9999; }
  100% { border-left-color: #ff4b4b; }
 }
 
 .crisis-alert strong {
  color: #d10000;
 }
</style>
""", unsafe_allow_html=True)

# 3. MODEL LOADING ===================================================
@st.cache_resource(show_spinner=False)
def load_model():
    return pipeline("text2text-generation", model="google/flan-t5-base")


# 4. PROMPT ENGINEERING ==============================================
def generate_prompt(user_input, counseling_style):
    """Generate context-aware prompts for different counseling approaches"""
    style_prompts = {
        "Cognitive Behavior Therapy": (
            "As a CBT therapist, suggest techniques to address: '{input}'. "
            "Focus on identifying cognitive distortions and suggest behavioral experiments. "
            "Provide 2-3 concrete interventions."
        ),
        "Psychodynamic": (
            "From a psychodynamic perspective, analyze: '{input}'. "
            "Consider unconscious patterns and childhood influences. "
            "Suggest exploratory questions to reveal underlying conflicts."
        ),
        "Humanistic": (
            "Using humanistic approach, respond to: '{input}'. "
            "Focus on unconditional positive regard and self-actualization. "
            "Provide empathetic reflections and growth-oriented suggestions."
        ),
        "Solution-Focused": (
            "Using solution-focused therapy, address: '{input}'. "
            "Identify exceptions to the problem and small achievable steps. "
            "Suggest 2-3 scaling questions or miracle questions."
        )
    }
    return style_prompts[counseling_style].format(input=user_input)

def get_references(approach):
    """Return evidence-based references with clinical guidelines"""
    references = {
        "Cognitive Behavior Therapy": {
            "text": "Beck, J. S. (2011). Cognitive Behavior Therapy: Basics and Beyond",
            "guide": "https://www.apa.org/pubs/books/cognitive-behavior-therapy"
        },
        "Psychodynamic": {
            "text": "McWilliams, N. (2020). Psychoanalytic Diagnosis",
            "guide": "https://www.guilford.com/books/Psychoanalytic-Diagnosis/McWilliams/9781462543694"
        },
        "Humanistic": {
            "text": "Rogers, C. (1951). Client-Centered Therapy",
            "guide": "https://www.nationalcounsellingsociety.org/about-therapy/types/humanistic"
        },
        "Solution-Focused": {
            "text": "De Shazer, S. (1988). Clues: Investigating Solutions in Brief Therapy",
            "guide": "https://www.solutionfocused.net/what-is-sfbt/"
        }
    }
    ref = references.get(approach, {
        "text": "Evidence-Based Practice in Psychology",
        "guide": "https://www.apa.org/practice/guidelines/evidence-based"
    })
    return f"{ref['text']} | [Clinical Guidelines]({ref['guide']})"

# 5. MAIN APPLICATION ================================================
def main():
 # Initialize session history
 if 'history' not in st.session_state:
     st.session_state.history = []
 
 st.title("🧠 Counselor Guidance Assistant")
 st.markdown("""
 *Professional support for mental health practitioners*  

 Enter a patient scenario below for evidence-based intervention suggestions.
 """)
 
 # Sidebar configuration
 with st.sidebar:
  st.title("Session Settings")
  counseling_style = st.selectbox(
      "Therapeutic Approach",
      ["Cognitive Behavior Therapy", "Psychodynamic", "Humanistic", "Solution-Focused"],
      index=0
  )
  creativity = st.slider("Response Creativity", 0.1, 1.0, 0.7)
  st.markdown("---")
  
  st.caption("""
  **Best Practices:**
  1. Describe specific behaviors/symptoms
  2. Include relevant history
  3. Note attempted interventions
  """)

  # Session history viewer
  if st.session_state.history:
   with st.expander("πŸ“š Session History (Last 5)"):
    for i, session in enumerate(st.session_state.history[-5:][::-1]):
        st.markdown(f"""
        **Session {len(st.session_state.history)-i}** ({session['timestamp']})
        - Approach: {session['approach']}
        - Case: {session['case']}
        """)
        if st.button(f"View Details #{len(st.session_state.history)-i}", key=f"view_{i}"):
            st.session_state.current_session = session
     
 # Example cases for quick testing
 with st.expander("πŸ’‘ Quick Start : Explore most commons challenges!! "):
  examples = {
    "Depression": "45yo male with treatment-resistant depression, expresses hopelessness about ever improving",
    "Anxiety": "College student experiencing panic attacks before exams despite knowing the material well",
    "Relationship": "Couple stuck in pursue-withdraw pattern, escalating arguments about household responsibilities"
  }
  cols = st.columns(3)
  for i, (label, example) in enumerate(examples.items()):
   with cols[i]:
    if st.button(label):
     case_description = example    
 
 # Main input area
 case_description = st.text_area(
  "Type your challenge below:",
  placeholder="My 28-year-old patient with social anxiety avoids all group situations despite previous exposure work...",
  height=250
 )
 
 # Crisis keywords detection
 CRISIS_KEYWORDS = ['suicide', 'self-harm', 'homicide', 'abuse', 'abused', 'kill myself', 'kill', 
          'want to die', 'end my life', 'hurt myself', 'hurt someone','suicidal']
 
 # Response generation
 if st.button("Analyze && Suggest", type="primary"):
  if not case_description.strip():
   st.warning("Please describe the clinical situation")
  else:
   # Crisis detection
   if any(keyword in case_description.lower() for keyword in CRISIS_KEYWORDS):
    st.markdown("""
    <div class="crisis-alert">
        <div style="font-size: 1.3rem;">⚠️ <strong>CRISIS ALERT</strong> - Immediate Action Required</div>
        <br>
        <div><strong>Clinical Protocols:</strong></div>
        <ol>
            <li>Assess immediate safety risk using direct questioning</li>
            <li>Implement safety planning if risk is present</li>
            <li>Do not leave patient alone if active suicidal/homicidal ideation exists</li>
        </ol>
        <div><strong>Emergency Resources:</strong></div>
        <ul>
            <li>πŸ‡ΊπŸ‡Έ <strong>988 Suicide & Crisis Lifeline</strong> (24/7)</li>
            <li>πŸ“± <strong>Crisis Text Line</strong>: Text HOME to 741741</li>
            <li>🌎 <strong>International Association for Suicide Prevention</strong>: <a href="https://www.iasp.info/resources/Crisis_Centres/">Find Local Help</a></li>
        </ul>
    </div>
    """, unsafe_allow_html=True)
    
    with st.expander("πŸ“‹ Clinician Guidance (Click for Protocol Details)"):
     st.markdown("""
     **Standard Crisis Response Protocol:**
     1. **Direct Assessment**  
        "Are you having thoughts of ending your life?"  
        "Do you have a plan?"  
        "Have you ever attempted before?"
     
     2. **Safety Planning**  
        - Remove access to means  
        - Identify support contacts  
        - Create step-by-step coping strategies
     
     3. **Documentation**  
        - Risk assessment findings  
        - Actions taken  
        - Follow-up plan
     """)
    
    # Log crisis event
    st.session_state.history.append({
        'timestamp': datetime.now().strftime("%Y-%m-%d %H:%M"),
        'approach': "CRISIS INTERVENTION",
        'case': "CRISIS DETECTED - " + case_description[:50] + "...",
        'recommendations': "Session halted - emergency protocols activated"
    })
    st.stop()
   
   with st.spinner("Generating evidence-based suggestions..."):
    try:
        llm = load_model()
        prompt = generate_prompt(case_description, counseling_style)
        
        # Simulate processing steps for better UX
        progress_bar = st.progress(0)
        for percent in range(0, 101, 20):
            time.sleep(0.1)
            progress_bar.progress(percent)
        
        response = llm(
            prompt,
            max_length=500,
            do_sample=True,
            temperature=creativity
        )[0]['generated_text']
        
        # Store session in history
        st.session_state.history.append({
            'timestamp': datetime.now().strftime("%Y-%m-%d %H:%M"),
            'approach': counseling_style,
            'case': case_description[:100] + "..." if len(case_description) > 100 else case_description,
            'recommendations': response
        })
        
        # Display formatted response
        st.markdown("## Clinical Recommendations")
        with st.container():
            st.markdown(f'<div class="responseCard">{response}</div>', 
                       unsafe_allow_html=True)
            
            # Add references
            st.markdown("---")
            st.caption(f"**Reference:** {get_references(counseling_style)}")
            
            # Response tools
            st.download_button(
                "Save Recommendations",
                data=f"Approach: {counseling_style}\n\n{response}",
                file_name=f"clinical_suggestions_{counseling_style}.txt"
            )
        
    except Exception as e:
        st.error(f"Error generating suggestions: {str(e)}")

if __name__ == "__main__":
    main()