Vevo / app.py
积极的屁孩
fix path
9755f3f
raw
history blame
44.2 kB
import os
import sys
import importlib.util
import site
import json
import torch
import gradio as gr
import torchaudio
import numpy as np
from huggingface_hub import snapshot_download, hf_hub_download
import subprocess
import re
import spaces
# 创建一个全局变量来跟踪已下载的资源
# Create a global variable to track downloaded resources
downloaded_resources = {
"configs": False,
"tokenizer_vq32": False,
"tokenizer_vq8192": False,
"ar_Vq32ToVq8192": False,
"ar_PhoneToVq8192": False,
"fmt_Vq8192ToMels": False,
"vocoder": False
}
def install_espeak():
"""Detect and install espeak-ng dependency"""
try:
# Check if espeak-ng is already installed
result = subprocess.run(["which", "espeak-ng"], capture_output=True, text=True)
if result.returncode != 0:
print("Detected espeak-ng not installed in the system, attempting to install...")
# Try to install espeak-ng and its data using apt-get
subprocess.run(["apt-get", "update"], check=True)
# Install espeak-ng and the corresponding language data package
subprocess.run(["apt-get", "install", "-y", "espeak-ng", "espeak-ng-data"], check=True)
print("espeak-ng and its data packages installed successfully!")
else:
print("espeak-ng is already installed in the system.")
# Even if already installed, try to update data to ensure integrity (optional but sometimes helpful)
# print("Attempting to update espeak-ng data...")
# subprocess.run(["apt-get", "update"], check=True)
# subprocess.run(["apt-get", "install", "--only-upgrade", "-y", "espeak-ng-data"], check=True)
# Verify Chinese support (optional)
try:
voices_result = subprocess.run(["espeak-ng", "--voices=cmn"], capture_output=True, text=True, check=True)
if "cmn" in voices_result.stdout:
print("espeak-ng supports 'cmn' language.")
else:
print("Warning: espeak-ng is installed, but 'cmn' language still seems unavailable.")
except Exception as e:
print(f"Error verifying espeak-ng Chinese support (may not affect functionality): {e}")
except Exception as e:
print(f"Error installing espeak-ng: {e}")
print("Please try to run manually: apt-get update && apt-get install -y espeak-ng espeak-ng-data")
# Install espeak before all other operations
install_espeak()
def patch_langsegment_init():
try:
# Try to find the location of the LangSegment package
spec = importlib.util.find_spec("LangSegment")
if spec is None or spec.origin is None:
print("Unable to locate LangSegment package.")
return
# Build the path to __init__.py
init_path = os.path.join(os.path.dirname(spec.origin), '__init__.py')
if not os.path.exists(init_path):
print(f"LangSegment __init__.py file not found at: {init_path}")
# Try to find in site-packages, applicable in some environments
for site_pkg_path in site.getsitepackages():
potential_path = os.path.join(site_pkg_path, 'LangSegment', '__init__.py')
if os.path.exists(potential_path):
init_path = potential_path
print(f"Found __init__.py in site-packages: {init_path}")
break
else: # If the loop ends normally (no break)
print(f"Also unable to find __init__.py in site-packages")
return
print(f"Attempting to read LangSegment __init__.py: {init_path}")
with open(init_path, 'r') as f:
lines = f.readlines()
modified = False
new_lines = []
target_line_prefix = "from .LangSegment import"
for line in lines:
stripped_line = line.strip()
if stripped_line.startswith(target_line_prefix):
if 'setLangfilters' in stripped_line or 'getLangfilters' in stripped_line:
print(f"Found line that needs modification: {stripped_line}")
# Remove setLangfilters and getLangfilters
modified_line = stripped_line.replace(',setLangfilters', '')
modified_line = modified_line.replace(',getLangfilters', '')
# Ensure comma handling is correct (e.g., if they are the last items)
modified_line = modified_line.replace('setLangfilters,', '')
modified_line = modified_line.replace('getLangfilters,', '')
# If they are the only extra imports, remove any redundant commas
modified_line = modified_line.rstrip(',')
new_lines.append(modified_line + '\n')
modified = True
print(f"Modified line: {modified_line.strip()}")
else:
new_lines.append(line) # Line is fine, keep as is
else:
new_lines.append(line) # Non-target line, keep as is
if modified:
print(f"Attempting to write back modified LangSegment __init__.py to: {init_path}")
try:
with open(init_path, 'w') as f:
f.writelines(new_lines)
print("LangSegment __init__.py modified successfully.")
# Try to reload the module to make changes effective (may not work, depending on import chain)
try:
import LangSegment
importlib.reload(LangSegment)
print("LangSegment module has been attempted to reload.")
except Exception as reload_e:
print(f"Error reloading LangSegment (may have no impact): {reload_e}")
except PermissionError:
print(f"Error: Insufficient permissions to modify {init_path}. Consider modifying requirements.txt.")
except Exception as write_e:
print(f"Other error occurred when writing LangSegment __init__.py: {write_e}")
else:
print("LangSegment __init__.py doesn't need modification.")
except ImportError:
print("LangSegment package not found, unable to fix.")
except Exception as e:
print(f"Unexpected error occurred when fixing LangSegment package: {e}")
# Execute the fix before all other imports (especially Amphion) that might trigger LangSegment
patch_langsegment_init()
# Clone Amphion repository
if not os.path.exists("Amphion"):
subprocess.run(["git", "clone", "https://github.com/open-mmlab/Amphion.git"])
os.chdir("Amphion")
else:
if not os.getcwd().endswith("Amphion"):
os.chdir("Amphion")
# Add Amphion to the path
if os.path.dirname(os.path.abspath("Amphion")) not in sys.path:
sys.path.append(os.path.dirname(os.path.abspath("Amphion")))
# Ensure needed directories exist
os.makedirs("wav", exist_ok=True)
os.makedirs("ckpts/Vevo", exist_ok=True)
from models.vc.vevo.vevo_utils import VevoInferencePipeline, save_audio, load_wav
# Download and setup config files
def setup_configs():
if downloaded_resources["configs"]:
print("Config files already downloaded, skipping...")
return
config_path = "models/vc/vevo/config"
os.makedirs(config_path, exist_ok=True)
config_files = [
"PhoneToVq8192.json",
"Vocoder.json",
"Vq32ToVq8192.json",
"Vq8192ToMels.json",
"hubert_large_l18_c32.yaml",
]
for file in config_files:
file_path = f"{config_path}/{file}"
if not os.path.exists(file_path):
try:
file_data = hf_hub_download(
repo_id="amphion/Vevo",
filename=f"config/{file}",
repo_type="model",
)
os.makedirs(os.path.dirname(file_path), exist_ok=True)
# Copy file to target location
subprocess.run(["cp", file_data, file_path])
except Exception as e:
print(f"Error downloading config file {file}: {e}")
downloaded_resources["configs"] = True
setup_configs()
# Device configuration
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
print(f"Using device: {device}")
# Initialize pipeline dictionary
inference_pipelines = {}
# Download all necessary model resources at startup
def preload_all_resources():
print("Preloading all model resources...")
# Download configuration files
setup_configs()
# Store the downloaded model paths
global downloaded_content_tokenizer_path
global downloaded_content_style_tokenizer_path
global downloaded_ar_vq32_path
global downloaded_ar_phone_path
global downloaded_fmt_path
global downloaded_vocoder_path
# Download Content Tokenizer (vq32)
if not downloaded_resources["tokenizer_vq32"]:
print("Preloading Content Tokenizer (vq32)...")
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["tokenizer/vq32/*"],
)
downloaded_content_tokenizer_path = local_dir
downloaded_resources["tokenizer_vq32"] = True
print("Content Tokenizer (vq32) download completed")
# Download Content-Style Tokenizer (vq8192)
if not downloaded_resources["tokenizer_vq8192"]:
print("Preloading Content-Style Tokenizer (vq8192)...")
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["tokenizer/vq8192/*"],
)
downloaded_content_style_tokenizer_path = local_dir
downloaded_resources["tokenizer_vq8192"] = True
print("Content-Style Tokenizer (vq8192) download completed")
# Download Autoregressive Transformer (Vq32ToVq8192)
if not downloaded_resources["ar_Vq32ToVq8192"]:
print("Preloading Autoregressive Transformer (Vq32ToVq8192)...")
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["contentstyle_modeling/Vq32ToVq8192/*"],
)
downloaded_ar_vq32_path = local_dir
downloaded_resources["ar_Vq32ToVq8192"] = True
print("Autoregressive Transformer (Vq32ToVq8192) download completed")
# Download Autoregressive Transformer (PhoneToVq8192)
if not downloaded_resources["ar_PhoneToVq8192"]:
print("Preloading Autoregressive Transformer (PhoneToVq8192)...")
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["contentstyle_modeling/PhoneToVq8192/*"],
)
downloaded_ar_phone_path = local_dir
downloaded_resources["ar_PhoneToVq8192"] = True
print("Autoregressive Transformer (PhoneToVq8192) download completed")
# Download Flow Matching Transformer
if not downloaded_resources["fmt_Vq8192ToMels"]:
print("Preloading Flow Matching Transformer (Vq8192ToMels)...")
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["acoustic_modeling/Vq8192ToMels/*"],
)
downloaded_fmt_path = local_dir
downloaded_resources["fmt_Vq8192ToMels"] = True
print("Flow Matching Transformer (Vq8192ToMels) download completed")
# Download Vocoder
if not downloaded_resources["vocoder"]:
print("Preloading Vocoder...")
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["acoustic_modeling/Vocoder/*"],
)
downloaded_vocoder_path = local_dir
downloaded_resources["vocoder"] = True
print("Vocoder download completed")
print("All model resources preloading completed!")
# Initialize path variables to store downloaded model paths
downloaded_content_tokenizer_path = None
downloaded_content_style_tokenizer_path = None
downloaded_ar_vq32_path = None
downloaded_ar_phone_path = None
downloaded_fmt_path = None
downloaded_vocoder_path = None
# Preload all resources before creating the Gradio interface
preload_all_resources()
def get_pipeline(pipeline_type):
if pipeline_type in inference_pipelines:
return inference_pipelines[pipeline_type]
# Initialize pipeline based on the required pipeline type
if pipeline_type == "style" or pipeline_type == "voice":
# Use already downloaded Content Tokenizer
if downloaded_resources["tokenizer_vq32"]:
content_tokenizer_ckpt_path = os.path.join(
downloaded_content_tokenizer_path, "tokenizer/vq32/hubert_large_l18_c32.pkl"
)
else:
# Fallback to direct download
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["tokenizer/vq32/*"],
)
content_tokenizer_ckpt_path = os.path.join(
local_dir, "tokenizer/vq32/hubert_large_l18_c32.pkl"
)
# Use already downloaded Content-Style Tokenizer
if downloaded_resources["tokenizer_vq8192"]:
content_style_tokenizer_ckpt_path = os.path.join(
downloaded_content_style_tokenizer_path, "tokenizer/vq8192"
)
else:
# Fallback to direct download
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["tokenizer/vq8192/*"],
)
content_style_tokenizer_ckpt_path = os.path.join(local_dir, "tokenizer/vq8192")
# Use already downloaded Autoregressive Transformer
ar_cfg_path = "./models/vc/vevo/config/Vq32ToVq8192.json"
if downloaded_resources["ar_Vq32ToVq8192"]:
ar_ckpt_path = os.path.join(
downloaded_ar_vq32_path, "contentstyle_modeling/Vq32ToVq8192"
)
else:
# Fallback to direct download
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["contentstyle_modeling/Vq32ToVq8192/*"],
)
ar_ckpt_path = os.path.join(local_dir, "contentstyle_modeling/Vq32ToVq8192")
# Use already downloaded Flow Matching Transformer
fmt_cfg_path = "./models/vc/vevo/config/Vq8192ToMels.json"
if downloaded_resources["fmt_Vq8192ToMels"]:
fmt_ckpt_path = os.path.join(
downloaded_fmt_path, "acoustic_modeling/Vq8192ToMels"
)
else:
# Fallback to direct download
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["acoustic_modeling/Vq8192ToMels/*"],
)
fmt_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vq8192ToMels")
# Use already downloaded Vocoder
vocoder_cfg_path = "./models/vc/vevo/config/Vocoder.json"
if downloaded_resources["vocoder"]:
vocoder_ckpt_path = os.path.join(
downloaded_vocoder_path, "acoustic_modeling/Vocoder"
)
else:
# Fallback to direct download
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["acoustic_modeling/Vocoder/*"],
)
vocoder_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vocoder")
# Initialize pipeline
inference_pipeline = VevoInferencePipeline(
content_tokenizer_ckpt_path=content_tokenizer_ckpt_path,
content_style_tokenizer_ckpt_path=content_style_tokenizer_ckpt_path,
ar_cfg_path=ar_cfg_path,
ar_ckpt_path=ar_ckpt_path,
fmt_cfg_path=fmt_cfg_path,
fmt_ckpt_path=fmt_ckpt_path,
vocoder_cfg_path=vocoder_cfg_path,
vocoder_ckpt_path=vocoder_ckpt_path,
device=device,
)
elif pipeline_type == "timbre":
# Use already downloaded Content-Style Tokenizer
if downloaded_resources["tokenizer_vq8192"]:
content_style_tokenizer_ckpt_path = os.path.join(
downloaded_content_style_tokenizer_path, "tokenizer/vq8192"
)
else:
# Fallback to direct download
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["tokenizer/vq8192/*"],
)
content_style_tokenizer_ckpt_path = os.path.join(local_dir, "tokenizer/vq8192")
# Use already downloaded Flow Matching Transformer
fmt_cfg_path = "./models/vc/vevo/config/Vq8192ToMels.json"
if downloaded_resources["fmt_Vq8192ToMels"]:
fmt_ckpt_path = os.path.join(
downloaded_fmt_path, "acoustic_modeling/Vq8192ToMels"
)
else:
# Fallback to direct download
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["acoustic_modeling/Vq8192ToMels/*"],
)
fmt_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vq8192ToMels")
# Use already downloaded Vocoder
vocoder_cfg_path = "./models/vc/vevo/config/Vocoder.json"
if downloaded_resources["vocoder"]:
vocoder_ckpt_path = os.path.join(
downloaded_vocoder_path, "acoustic_modeling/Vocoder"
)
else:
# Fallback to direct download
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["acoustic_modeling/Vocoder/*"],
)
vocoder_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vocoder")
# Initialize pipeline
inference_pipeline = VevoInferencePipeline(
content_style_tokenizer_ckpt_path=content_style_tokenizer_ckpt_path,
fmt_cfg_path=fmt_cfg_path,
fmt_ckpt_path=fmt_ckpt_path,
vocoder_cfg_path=vocoder_cfg_path,
vocoder_ckpt_path=vocoder_ckpt_path,
device=device,
)
elif pipeline_type == "tts":
# Use already downloaded Content-Style Tokenizer
if downloaded_resources["tokenizer_vq8192"]:
content_style_tokenizer_ckpt_path = os.path.join(
downloaded_content_style_tokenizer_path, "tokenizer/vq8192"
)
else:
# Fallback to direct download
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["tokenizer/vq8192/*"],
)
content_style_tokenizer_ckpt_path = os.path.join(local_dir, "tokenizer/vq8192")
# Use already downloaded Autoregressive Transformer (TTS specific)
ar_cfg_path = "./models/vc/vevo/config/PhoneToVq8192.json"
if downloaded_resources["ar_PhoneToVq8192"]:
ar_ckpt_path = os.path.join(
downloaded_ar_phone_path, "contentstyle_modeling/PhoneToVq8192"
)
else:
# Fallback to direct download
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["contentstyle_modeling/PhoneToVq8192/*"],
)
ar_ckpt_path = os.path.join(local_dir, "contentstyle_modeling/PhoneToVq8192")
# Use already downloaded Flow Matching Transformer
fmt_cfg_path = "./models/vc/vevo/config/Vq8192ToMels.json"
if downloaded_resources["fmt_Vq8192ToMels"]:
fmt_ckpt_path = os.path.join(
downloaded_fmt_path, "acoustic_modeling/Vq8192ToMels"
)
else:
# Fallback to direct download
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["acoustic_modeling/Vq8192ToMels/*"],
)
fmt_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vq8192ToMels")
# Use already downloaded Vocoder
vocoder_cfg_path = "./models/vc/vevo/config/Vocoder.json"
if downloaded_resources["vocoder"]:
vocoder_ckpt_path = os.path.join(
downloaded_vocoder_path, "acoustic_modeling/Vocoder"
)
else:
# Fallback to direct download
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["acoustic_modeling/Vocoder/*"],
)
vocoder_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vocoder")
# Initialize pipeline
inference_pipeline = VevoInferencePipeline(
content_style_tokenizer_ckpt_path=content_style_tokenizer_ckpt_path,
ar_cfg_path=ar_cfg_path,
ar_ckpt_path=ar_ckpt_path,
fmt_cfg_path=fmt_cfg_path,
fmt_ckpt_path=fmt_ckpt_path,
vocoder_cfg_path=vocoder_cfg_path,
vocoder_ckpt_path=vocoder_ckpt_path,
device=device,
)
# Cache pipeline instance
inference_pipelines[pipeline_type] = inference_pipeline
return inference_pipeline
# Implement VEVO functionality functions
@spaces.GPU()
def vevo_style(content_wav, style_wav):
temp_content_path = "wav/temp_content.wav"
temp_style_path = "wav/temp_style.wav"
output_path = "wav/output_vevostyle.wav"
# Check and process audio data
if content_wav is None or style_wav is None:
raise ValueError("Please upload audio files")
# Process audio format
if isinstance(content_wav, tuple) and len(content_wav) == 2:
if isinstance(content_wav[0], np.ndarray):
content_data, content_sr = content_wav
else:
content_sr, content_data = content_wav
# Ensure single channel
if len(content_data.shape) > 1 and content_data.shape[1] > 1:
content_data = np.mean(content_data, axis=1)
# Resample to 24kHz
if content_sr != 24000:
content_tensor = torch.FloatTensor(content_data).unsqueeze(0)
content_tensor = torchaudio.functional.resample(content_tensor, content_sr, 24000)
content_sr = 24000
else:
content_tensor = torch.FloatTensor(content_data).unsqueeze(0)
# Normalize volume
content_tensor = content_tensor / (torch.max(torch.abs(content_tensor)) + 1e-6) * 0.95
else:
raise ValueError("Invalid content audio format")
if isinstance(style_wav[0], np.ndarray):
style_data, style_sr = style_wav
else:
style_sr, style_data = style_wav
# Ensure single channel
if len(style_data.shape) > 1 and style_data.shape[1] > 1:
style_data = np.mean(style_data, axis=1)
# Resample to 24kHz
if style_sr != 24000:
style_tensor = torch.FloatTensor(style_data).unsqueeze(0)
style_tensor = torchaudio.functional.resample(style_tensor, style_sr, 24000)
style_sr = 24000
else:
style_tensor = torch.FloatTensor(style_data).unsqueeze(0)
# Normalize volume
style_tensor = style_tensor / (torch.max(torch.abs(style_tensor)) + 1e-6) * 0.95
# Print debug information
print(f"Content audio shape: {content_tensor.shape}, sample rate: {content_sr}")
print(f"Style audio shape: {style_tensor.shape}, sample rate: {style_sr}")
# Save audio
torchaudio.save(temp_content_path, content_tensor, content_sr)
torchaudio.save(temp_style_path, style_tensor, style_sr)
try:
# Get pipeline
pipeline = get_pipeline("style")
# Inference
gen_audio = pipeline.inference_ar_and_fm(
src_wav_path=temp_content_path,
src_text=None,
style_ref_wav_path=temp_style_path,
timbre_ref_wav_path=temp_content_path,
)
# Check if generated audio is numerical anomaly
if torch.isnan(gen_audio).any() or torch.isinf(gen_audio).any():
print("Warning: Generated audio contains NaN or Inf values")
gen_audio = torch.nan_to_num(gen_audio, nan=0.0, posinf=0.95, neginf=-0.95)
print(f"Generated audio shape: {gen_audio.shape}, max: {torch.max(gen_audio)}, min: {torch.min(gen_audio)}")
# Save generated audio
save_audio(gen_audio, output_path=output_path)
return output_path
except Exception as e:
print(f"Error during processing: {e}")
import traceback
traceback.print_exc()
raise e
@spaces.GPU()
def vevo_timbre(content_wav, reference_wav):
temp_content_path = "wav/temp_content.wav"
temp_reference_path = "wav/temp_reference.wav"
output_path = "wav/output_vevotimbre.wav"
# Check and process audio data
if content_wav is None or reference_wav is None:
raise ValueError("Please upload audio files")
# Process content audio format
if isinstance(content_wav, tuple) and len(content_wav) == 2:
if isinstance(content_wav[0], np.ndarray):
content_data, content_sr = content_wav
else:
content_sr, content_data = content_wav
# Ensure single channel
if len(content_data.shape) > 1 and content_data.shape[1] > 1:
content_data = np.mean(content_data, axis=1)
# Resample to 24kHz
if content_sr != 24000:
content_tensor = torch.FloatTensor(content_data).unsqueeze(0)
content_tensor = torchaudio.functional.resample(content_tensor, content_sr, 24000)
content_sr = 24000
else:
content_tensor = torch.FloatTensor(content_data).unsqueeze(0)
# Normalize volume
content_tensor = content_tensor / (torch.max(torch.abs(content_tensor)) + 1e-6) * 0.95
else:
raise ValueError("Invalid content audio format")
# Process reference audio format
if isinstance(reference_wav, tuple) and len(reference_wav) == 2:
if isinstance(reference_wav[0], np.ndarray):
reference_data, reference_sr = reference_wav
else:
reference_sr, reference_data = reference_wav
# Ensure single channel
if len(reference_data.shape) > 1 and reference_data.shape[1] > 1:
reference_data = np.mean(reference_data, axis=1)
# Resample to 24kHz
if reference_sr != 24000:
reference_tensor = torch.FloatTensor(reference_data).unsqueeze(0)
reference_tensor = torchaudio.functional.resample(reference_tensor, reference_sr, 24000)
reference_sr = 24000
else:
reference_tensor = torch.FloatTensor(reference_data).unsqueeze(0)
# Normalize volume
reference_tensor = reference_tensor / (torch.max(torch.abs(reference_tensor)) + 1e-6) * 0.95
else:
raise ValueError("Invalid reference audio format")
# Print debug information
print(f"Content audio shape: {content_tensor.shape}, sample rate: {content_sr}")
print(f"Reference audio shape: {reference_tensor.shape}, sample rate: {reference_sr}")
# Save uploaded audio
torchaudio.save(temp_content_path, content_tensor, content_sr)
torchaudio.save(temp_reference_path, reference_tensor, reference_sr)
try:
# Get pipeline
pipeline = get_pipeline("timbre")
# Inference
gen_audio = pipeline.inference_fm(
src_wav_path=temp_content_path,
timbre_ref_wav_path=temp_reference_path,
flow_matching_steps=32,
)
# Check if generated audio is numerical anomaly
if torch.isnan(gen_audio).any() or torch.isinf(gen_audio).any():
print("Warning: Generated audio contains NaN or Inf values")
gen_audio = torch.nan_to_num(gen_audio, nan=0.0, posinf=0.95, neginf=-0.95)
print(f"Generated audio shape: {gen_audio.shape}, max: {torch.max(gen_audio)}, min: {torch.min(gen_audio)}")
# Save generated audio
save_audio(gen_audio, output_path=output_path)
return output_path
except Exception as e:
print(f"Error during processing: {e}")
import traceback
traceback.print_exc()
raise e
@spaces.GPU()
def vevo_voice(content_wav, style_reference_wav, timbre_reference_wav):
temp_content_path = "wav/temp_content.wav"
temp_style_path = "wav/temp_style.wav"
temp_timbre_path = "wav/temp_timbre.wav"
output_path = "wav/output_vevovoice.wav"
# Check and process audio data
if content_wav is None or style_reference_wav is None or timbre_reference_wav is None:
raise ValueError("Please upload all required audio files")
# Process content audio format
if isinstance(content_wav, tuple) and len(content_wav) == 2:
if isinstance(content_wav[0], np.ndarray):
content_data, content_sr = content_wav
else:
content_sr, content_data = content_wav
# Ensure single channel
if len(content_data.shape) > 1 and content_data.shape[1] > 1:
content_data = np.mean(content_data, axis=1)
# Resample to 24kHz
if content_sr != 24000:
content_tensor = torch.FloatTensor(content_data).unsqueeze(0)
content_tensor = torchaudio.functional.resample(content_tensor, content_sr, 24000)
content_sr = 24000
else:
content_tensor = torch.FloatTensor(content_data).unsqueeze(0)
# Normalize volume
content_tensor = content_tensor / (torch.max(torch.abs(content_tensor)) + 1e-6) * 0.95
else:
raise ValueError("Invalid content audio format")
# Process style reference audio format
if isinstance(style_reference_wav, tuple) and len(style_reference_wav) == 2:
if isinstance(style_reference_wav[0], np.ndarray):
style_data, style_sr = style_reference_wav
else:
style_sr, style_data = style_reference_wav
# Ensure single channel
if len(style_data.shape) > 1 and style_data.shape[1] > 1:
style_data = np.mean(style_data, axis=1)
# Resample to 24kHz
if style_sr != 24000:
style_tensor = torch.FloatTensor(style_data).unsqueeze(0)
style_tensor = torchaudio.functional.resample(style_tensor, style_sr, 24000)
style_sr = 24000
else:
style_tensor = torch.FloatTensor(style_data).unsqueeze(0)
# Normalize volume
style_tensor = style_tensor / (torch.max(torch.abs(style_tensor)) + 1e-6) * 0.95
else:
raise ValueError("Invalid style reference audio format")
# Process timbre reference audio format
if isinstance(timbre_reference_wav, tuple) and len(timbre_reference_wav) == 2:
if isinstance(timbre_reference_wav[0], np.ndarray):
timbre_data, timbre_sr = timbre_reference_wav
else:
timbre_sr, timbre_data = timbre_reference_wav
# Ensure single channel
if len(timbre_data.shape) > 1 and timbre_data.shape[1] > 1:
timbre_data = np.mean(timbre_data, axis=1)
# Resample to 24kHz
if timbre_sr != 24000:
timbre_tensor = torch.FloatTensor(timbre_data).unsqueeze(0)
timbre_tensor = torchaudio.functional.resample(timbre_tensor, timbre_sr, 24000)
timbre_sr = 24000
else:
timbre_tensor = torch.FloatTensor(timbre_data).unsqueeze(0)
# Normalize volume
timbre_tensor = timbre_tensor / (torch.max(torch.abs(timbre_tensor)) + 1e-6) * 0.95
else:
raise ValueError("Invalid timbre reference audio format")
# Print debug information
print(f"Content audio shape: {content_tensor.shape}, sample rate: {content_sr}")
print(f"Style reference audio shape: {style_tensor.shape}, sample rate: {style_sr}")
print(f"Timbre reference audio shape: {timbre_tensor.shape}, sample rate: {timbre_sr}")
# Save uploaded audio
torchaudio.save(temp_content_path, content_tensor, content_sr)
torchaudio.save(temp_style_path, style_tensor, style_sr)
torchaudio.save(temp_timbre_path, timbre_tensor, timbre_sr)
try:
# Get pipeline
pipeline = get_pipeline("voice")
# Inference
gen_audio = pipeline.inference_ar_and_fm(
src_wav_path=temp_content_path,
src_text=None,
style_ref_wav_path=temp_style_path,
timbre_ref_wav_path=temp_timbre_path,
)
# Check if generated audio is numerical anomaly
if torch.isnan(gen_audio).any() or torch.isinf(gen_audio).any():
print("Warning: Generated audio contains NaN or Inf values")
gen_audio = torch.nan_to_num(gen_audio, nan=0.0, posinf=0.95, neginf=-0.95)
print(f"Generated audio shape: {gen_audio.shape}, max: {torch.max(gen_audio)}, min: {torch.min(gen_audio)}")
# Save generated audio
save_audio(gen_audio, output_path=output_path)
return output_path
except Exception as e:
print(f"Error during processing: {e}")
import traceback
traceback.print_exc()
raise e
@spaces.GPU()
def vevo_tts(text, ref_wav, timbre_ref_wav=None, style_ref_text=None, src_language="en", ref_language="en", style_ref_text_language="en"):
temp_ref_path = "wav/temp_ref.wav"
temp_timbre_path = "wav/temp_timbre.wav"
output_path = "wav/output_vevotts.wav"
# Check and process audio data
if ref_wav is None:
raise ValueError("Please upload a reference audio file")
# Process reference audio format
if isinstance(ref_wav, tuple) and len(ref_wav) == 2:
if isinstance(ref_wav[0], np.ndarray):
ref_data, ref_sr = ref_wav
else:
ref_sr, ref_data = ref_wav
# Ensure single channel
if len(ref_data.shape) > 1 and ref_data.shape[1] > 1:
ref_data = np.mean(ref_data, axis=1)
# Resample to 24kHz
if ref_sr != 24000:
ref_tensor = torch.FloatTensor(ref_data).unsqueeze(0)
ref_tensor = torchaudio.functional.resample(ref_tensor, ref_sr, 24000)
ref_sr = 24000
else:
ref_tensor = torch.FloatTensor(ref_data).unsqueeze(0)
# Normalize volume
ref_tensor = ref_tensor / (torch.max(torch.abs(ref_tensor)) + 1e-6) * 0.95
else:
raise ValueError("Invalid reference audio format")
# Print debug information
print(f"Reference audio shape: {ref_tensor.shape}, sample rate: {ref_sr}")
if style_ref_text:
print(f"Style reference text: {style_ref_text}, language: {style_ref_text_language}")
# Save uploaded audio
torchaudio.save(temp_ref_path, ref_tensor, ref_sr)
if timbre_ref_wav is not None:
if isinstance(timbre_ref_wav, tuple) and len(timbre_ref_wav) == 2:
if isinstance(timbre_ref_wav[0], np.ndarray):
timbre_data, timbre_sr = timbre_ref_wav
else:
timbre_sr, timbre_data = timbre_ref_wav
# Ensure single channel
if len(timbre_data.shape) > 1 and timbre_data.shape[1] > 1:
timbre_data = np.mean(timbre_data, axis=1)
# Resample to 24kHz
if timbre_sr != 24000:
timbre_tensor = torch.FloatTensor(timbre_data).unsqueeze(0)
timbre_tensor = torchaudio.functional.resample(timbre_tensor, timbre_sr, 24000)
timbre_sr = 24000
else:
timbre_tensor = torch.FloatTensor(timbre_data).unsqueeze(0)
# Normalize volume
timbre_tensor = timbre_tensor / (torch.max(torch.abs(timbre_tensor)) + 1e-6) * 0.95
print(f"Timbre reference audio shape: {timbre_tensor.shape}, sample rate: {timbre_sr}")
torchaudio.save(temp_timbre_path, timbre_tensor, timbre_sr)
else:
raise ValueError("Invalid timbre reference audio format")
else:
temp_timbre_path = temp_ref_path
try:
# Get pipeline
pipeline = get_pipeline("tts")
# Inference
gen_audio = pipeline.inference_ar_and_fm(
src_wav_path=None,
src_text=text,
style_ref_wav_path=temp_ref_path,
timbre_ref_wav_path=temp_timbre_path,
style_ref_wav_text=style_ref_text,
src_text_language=src_language,
style_ref_wav_text_language=style_ref_text_language,
)
# Check if generated audio is numerical anomaly
if torch.isnan(gen_audio).any() or torch.isinf(gen_audio).any():
print("Warning: Generated audio contains NaN or Inf values")
gen_audio = torch.nan_to_num(gen_audio, nan=0.0, posinf=0.95, neginf=-0.95)
print(f"Generated audio shape: {gen_audio.shape}, max: {torch.max(gen_audio)}, min: {torch.min(gen_audio)}")
# Save generated audio
save_audio(gen_audio, output_path=output_path)
return output_path
except Exception as e:
print(f"Error during processing: {e}")
import traceback
traceback.print_exc()
raise e
# Create Gradio interface
with gr.Blocks(title="Vevo: Controllable Zero-Shot Voice Imitation with Self-Supervised Disentanglement") as demo:
gr.Markdown("# Vevo: Controllable Zero-Shot Voice Imitation with Self-Supervised Disentanglement")
# Add link tag line
with gr.Row(elem_id="links_row"):
gr.HTML("""
<div style="display: flex; justify-content: flex-start; gap: 8px; margin: 0 0; padding-left: 0px;">
<a href="https://arxiv.org/abs/2502.07243" target="_blank" style="text-decoration: none;">
<img alt="arXiv Paper" src="https://img.shields.io/badge/arXiv-Paper-red">
</a>
<a href="https://openreview.net/pdf?id=anQDiQZhDP" target="_blank" style="text-decoration: none;">
<img alt="ICLR Paper" src="https://img.shields.io/badge/ICLR-Paper-64b63a">
</a>
<a href="https://huggingface.co/amphion/Vevo" target="_blank" style="text-decoration: none;">
<img alt="HuggingFace Model" src="https://img.shields.io/badge/%F0%9F%A4%97%20HuggingFace-Model-yellow">
</a>
<a href="https://github.com/open-mmlab/Amphion/tree/main/models/vc/vevo" target="_blank" style="text-decoration: none;">
<img alt="GitHub Repo" src="https://img.shields.io/badge/GitHub-Repo-blue">
</a>
</div>
""")
with gr.Tab("Vevo-Timbre"):
gr.Markdown("### Vevo-Timbre: Maintain style but transfer timbre")
with gr.Row():
with gr.Column():
timbre_content = gr.Audio(label="Source Audio", type="numpy")
timbre_reference = gr.Audio(label="Timbre Reference", type="numpy")
timbre_button = gr.Button("Generate")
with gr.Column():
timbre_output = gr.Audio(label="Result")
timbre_button.click(vevo_timbre, inputs=[timbre_content, timbre_reference], outputs=timbre_output)
with gr.Tab("Vevo-Style"):
gr.Markdown("### Vevo-Style: Maintain timbre but transfer style (accent, emotion, etc.)")
with gr.Row():
with gr.Column():
style_content = gr.Audio(label="Source Audio", type="numpy")
style_reference = gr.Audio(label="Style Reference", type="numpy")
style_button = gr.Button("Generate")
with gr.Column():
style_output = gr.Audio(label="Result")
style_button.click(vevo_style, inputs=[style_content, style_reference], outputs=style_output)
with gr.Tab("Vevo-Voice"):
gr.Markdown("### Vevo-Voice: Transfers both style and timbre with separate references")
with gr.Row():
with gr.Column():
voice_content = gr.Audio(label="Source Audio", type="numpy")
voice_style_reference = gr.Audio(label="Style Reference", type="numpy")
voice_timbre_reference = gr.Audio(label="Timbre Reference", type="numpy")
voice_button = gr.Button("Generate")
with gr.Column():
voice_output = gr.Audio(label="Result")
voice_button.click(vevo_voice, inputs=[voice_content, voice_style_reference, voice_timbre_reference], outputs=voice_output)
with gr.Tab("Vevo-TTS"):
gr.Markdown("### Vevo-TTS: Text-to-speech with separate style and timbre references")
with gr.Row():
with gr.Column():
tts_text = gr.Textbox(label="Target Text", placeholder="Enter text to synthesize...", lines=3)
tts_src_language = gr.Dropdown(["en", "zh", "de", "fr", "ja", "ko"], label="Text Language", value="en")
tts_reference = gr.Audio(label="Style Reference", type="numpy")
tts_style_ref_text = gr.Textbox(label="Style Reference Text", placeholder="Enter style reference text...", lines=3)
tts_style_ref_text_language = gr.Dropdown(["en", "zh", "de", "fr", "ja", "ko"], label="Style Reference Text Language", value="en")
tts_timbre_reference = gr.Audio(label="Timbre Reference", type="numpy")
tts_button = gr.Button("Generate")
with gr.Column():
tts_output = gr.Audio(label="Result")
tts_button.click(
vevo_tts,
inputs=[tts_text, tts_reference, tts_timbre_reference, tts_style_ref_text, tts_src_language, tts_style_ref_text_language],
outputs=tts_output
)
gr.Markdown("""
## About VEVO
VEVO is a versatile voice synthesis and conversion model that offers four main functionalities:
1. **Vevo-Style**: Maintains timbre but transfers style (accent, emotion, etc.)
2. **Vevo-Timbre**: Maintains style but transfers timbre
3. **Vevo-Voice**: Transfers both style and timbre with separate references
4. **Vevo-TTS**: Text-to-speech with separate style and timbre references
For more information, visit the [Amphion project](https://github.com/open-mmlab/Amphion)
""")
# Launch application
demo.launch()