Spaces:
Paused
Paused
uuu
Browse files
app.py
CHANGED
@@ -4,15 +4,10 @@ import torch
|
|
4 |
import gradio as gr
|
5 |
import spaces
|
6 |
from huggingface_hub import login
|
7 |
-
# from diffusers.utils import load_image
|
8 |
-
#
|
9 |
-
# from models.transformer_sd3 import SD3Transformer2DModel
|
10 |
-
# from pipeline_stable_diffusion_3_ipa import StableDiffusion3Pipeline
|
11 |
-
import torch
|
12 |
-
from diffusers import StableDiffusion3ControlNetPipeline, SD3ControlNetModel
|
13 |
from diffusers.utils import load_image
|
14 |
-
|
15 |
-
from
|
|
|
16 |
|
17 |
# ----------------------------
|
18 |
# Step 1: Download IP Adapter if not exists
|
@@ -37,63 +32,45 @@ if not token:
|
|
37 |
raise ValueError("Hugging Face token not found. Set the 'HF_TOKEN' environment variable.")
|
38 |
login(token=token)
|
39 |
|
40 |
-
|
41 |
ip_adapter_path = './ip-adapter.bin'
|
42 |
image_encoder_path = "google/siglip-so400m-patch14-384"
|
43 |
-
#
|
44 |
-
# transformer = SD3Transformer2DModel.from_pretrained(
|
45 |
-
# model_path, subfolder="transformer", torch_dtype=torch.bfloat16
|
46 |
-
# )
|
47 |
-
#
|
48 |
-
# pipe = StableDiffusion3Pipeline.from_pretrained(
|
49 |
-
# model_path, transformer=transformer, torch_dtype=torch.bfloat16
|
50 |
-
# ).to("cuda")
|
51 |
-
|
52 |
|
|
|
|
|
|
|
53 |
|
54 |
-
|
|
|
|
|
55 |
|
56 |
-
|
57 |
-
ip_adapter_path,
|
58 |
image_encoder_path=image_encoder_path,
|
59 |
nb_token=64,
|
60 |
-
torch_dtype=torch.float16
|
61 |
)
|
62 |
|
63 |
-
pipe = StableDiffusion3ControlNetPipeline.from_pretrained(
|
64 |
-
"stabilityai/stable-diffusion-3.5-large",
|
65 |
-
controlnet=controlnet,adapter=adapter,
|
66 |
-
torch_dtype=torch.float16,
|
67 |
-
).to("cuda")
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
|
72 |
# ----------------------------
|
73 |
# Step 6: Gradio Function
|
74 |
# ----------------------------
|
75 |
@spaces.GPU
|
76 |
def gui_generation(prompt,negative_prompt, ref_img, guidance_scale, ipadapter_scale):
|
77 |
-
ref_img = load_image(ref_img.name).convert('RGB')
|
78 |
-
image = load_image(ref_img.name)
|
79 |
|
80 |
-
depth_preprocessor = DepthPreprocessor.from_pretrained("depth-anything/Depth-Anything-V2-Large-hf").to("cuda")
|
81 |
-
control_image = depth_preprocessor(image, invert=True)[0].convert("RGB")
|
82 |
|
83 |
-
|
84 |
-
pipe.set_ip_adapter_scale(ipadapter_scale) # Adjust the scale as needed
|
85 |
|
|
|
86 |
image = pipe(
|
87 |
width=1024,
|
88 |
height=1024,
|
89 |
prompt=prompt,
|
90 |
negative_prompt=negative_prompt,
|
91 |
-
|
92 |
guidance_scale=guidance_scale,
|
|
|
93 |
clip_image=ref_img,
|
94 |
-
|
95 |
-
generator=generator,
|
96 |
-
max_sequence_length=77,
|
97 |
).images[0]
|
98 |
|
99 |
return image
|
|
|
4 |
import gradio as gr
|
5 |
import spaces
|
6 |
from huggingface_hub import login
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
from diffusers.utils import load_image
|
8 |
+
|
9 |
+
from models.transformer_sd3 import SD3Transformer2DModel
|
10 |
+
from pipeline_stable_diffusion_3_ipa import StableDiffusion3Pipeline
|
11 |
|
12 |
# ----------------------------
|
13 |
# Step 1: Download IP Adapter if not exists
|
|
|
32 |
raise ValueError("Hugging Face token not found. Set the 'HF_TOKEN' environment variable.")
|
33 |
login(token=token)
|
34 |
|
35 |
+
model_path = 'stabilityai/stable-diffusion-3.5-large'
|
36 |
ip_adapter_path = './ip-adapter.bin'
|
37 |
image_encoder_path = "google/siglip-so400m-patch14-384"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
+
transformer = SD3Transformer2DModel.from_pretrained(
|
40 |
+
model_path, subfolder="transformer", torch_dtype=torch.bfloat16
|
41 |
+
)
|
42 |
|
43 |
+
pipe = StableDiffusion3Pipeline.from_pretrained(
|
44 |
+
model_path, transformer=transformer, torch_dtype=torch.bfloat16
|
45 |
+
).to("cuda")
|
46 |
|
47 |
+
pipe.init_ipadapter(
|
48 |
+
ip_adapter_path=ip_adapter_path,
|
49 |
image_encoder_path=image_encoder_path,
|
50 |
nb_token=64,
|
|
|
51 |
)
|
52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
# ----------------------------
|
55 |
# Step 6: Gradio Function
|
56 |
# ----------------------------
|
57 |
@spaces.GPU
|
58 |
def gui_generation(prompt,negative_prompt, ref_img, guidance_scale, ipadapter_scale):
|
|
|
|
|
59 |
|
|
|
|
|
60 |
|
61 |
+
ref_img = load_image(ref_img.name).convert('RGB')
|
|
|
62 |
|
63 |
+
# please note that SD3.5 Large is sensitive to highres generation like 1536x1536
|
64 |
image = pipe(
|
65 |
width=1024,
|
66 |
height=1024,
|
67 |
prompt=prompt,
|
68 |
negative_prompt=negative_prompt,
|
69 |
+
num_inference_steps=24,
|
70 |
guidance_scale=guidance_scale,
|
71 |
+
generator=torch.Generator("cuda").manual_seed(42),
|
72 |
clip_image=ref_img,
|
73 |
+
ipadapter_scale=ipadapter_scale,
|
|
|
|
|
74 |
).images[0]
|
75 |
|
76 |
return image
|