README / app.py
ThreadAbort's picture
[Update]: Integrated Stable Diffusion for artistic visualizations 🎨
b4e28c8
raw
history blame
8.57 kB
import gradio as gr
import spaces
import torch
import numpy as np
from typing import Tuple, List
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler
import random
# Initialize Stable Diffusion
device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "tensorart/stable-diffusion-3.5-large-TurboX"
if torch.cuda.is_available():
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
pipe.scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(model_repo_id, subfolder="scheduler", shift=5)
pipe = pipe.to(device)
MAX_SEED = np.iinfo(np.int32).max
class EmotionalContext:
"""Implements Mem|8's emotional context structure"""
def __init__(self):
self.valence = torch.zeros(1).cuda() # -128 to 127: negative to positive
self.arousal = torch.zeros(1).cuda() # 0 to 255: intensity level
self.context = torch.zeros(1).cuda() # Contextual flags
def create_wave_pattern(size: int, frequency: float, amplitude: float) -> torch.Tensor:
"""Create a wave pattern as described in Mem|8 paper"""
t = torch.linspace(0, 2*np.pi, size).cuda()
x = torch.linspace(0, 2*np.pi, size).cuda()
T, X = torch.meshgrid(t, x, indexing='ij')
return amplitude * torch.sin(frequency * T + X)
def generate_memory_prompt(operation: str, emotion_valence: float) -> str:
"""Generate artistic prompts based on memory operation and emotional state"""
base_prompts = {
"wave_memory": "memories flowing like waves in an infinite ocean, ",
"interference": "two waves of memory intersecting and creating patterns, ",
"resonance": "resonating waves of consciousness forming harmonious patterns, "
}
emotion_desc = "serene and peaceful" if -20 <= emotion_valence <= 20 else \
"joyful and vibrant" if emotion_valence > 20 else \
"dark and introspective"
style = "digital art, abstract, flowing, wave patterns, "
prompt = f"{base_prompts[operation]}{emotion_desc}, {style} ethereal, dreamlike quality"
return prompt
@spaces.GPU(duration=65)
def quantum_memory_ops(
input_size: int,
operation: str,
emotion_valence: float,
generate_art: bool = True,
seed: int = 42
) -> Tuple[str, np.ndarray, np.ndarray]:
"""Perform quantum-inspired memory operations using Mem|8 concepts."""
# Initialize emotional context
emotion = EmotionalContext()
emotion.valence = torch.tensor([emotion_valence]).cuda()
emotion.arousal = torch.abs(torch.tensor([emotion_valence * 2])).cuda()
results = []
wave_viz = None
art_viz = None
if operation == "wave_memory":
# Create memory wave pattern (M = A·exp(iωt-kx)·D·E)
wave = create_wave_pattern(input_size, 2.0, 1.0)
emotional_mod = torch.exp(emotion.valence/128 * wave)
memory_state = wave * emotional_mod
results.append(f"Wave Memory Pattern Created:")
results.append(f"Shape: {memory_state.shape}")
results.append(f"Emotional Modulation: {emotional_mod.mean().item():.4f}")
results.append(f"Memory Coherence: {torch.linalg.norm(memory_state).item():.4f}")
wave_viz = memory_state.cpu().numpy()
elif operation == "interference":
# Create interference between two memory waves
wave1 = create_wave_pattern(input_size, 2.0, 1.0)
wave2 = create_wave_pattern(input_size, 3.0, 0.5)
interference = wave1 + wave2
emotional_weight = torch.sigmoid(emotion.valence/128) * interference
results.append(f"Memory Interference Pattern:")
results.append(f"Pattern Strength: {torch.max(emotional_weight).item():.4f}")
results.append(f"Emotional Weight: {emotion.valence.item()/128:.4f}")
wave_viz = emotional_weight.cpu().numpy()
elif operation == "resonance":
# Demonstrate emotional resonance patterns
base_wave = create_wave_pattern(input_size, 2.0, 1.0)
resonance_freq = 1.0 + torch.sigmoid(emotion.valence/128)
resonant_wave = create_wave_pattern(input_size, resonance_freq.item(), 1.0)
resonance = base_wave * resonant_wave
results.append(f"Emotional Resonance Pattern:")
results.append(f"Resonance Frequency: {resonance_freq.item():.4f}")
results.append(f"Pattern Energy: {torch.sum(resonance**2).item():.4f}")
wave_viz = resonance.cpu().numpy()
results.append(f"\nEmotional Context:")
results.append(f"Valence: {emotion.valence.item():.2f}")
results.append(f"Arousal: {emotion.arousal.item():.2f}")
results.append(f"Device: {wave.device}")
# Generate artistic visualization if requested
if generate_art:
prompt = generate_memory_prompt(operation, emotion_valence)
generator = torch.Generator().manual_seed(seed)
art_viz = pipe(
prompt=prompt,
negative_prompt="text, watermark, signature, blurry, distorted",
guidance_scale=1.5,
num_inference_steps=8,
width=768,
height=768,
generator=generator,
).images[0]
results.append(f"\nArtistic Visualization:")
results.append(f"Prompt: {prompt}")
results.append(f"Seed: {seed}")
return "\n".join(results), wave_viz, art_viz
# Create a beautiful interface inspired by Mem|8's wave concepts
with gr.Blocks(theme=gr.themes.Soft(primary_hue="purple", secondary_hue="blue")) as demo:
gr.Markdown("""
# 🌊 Mem|8 Wave Memory Explorer
Welcome to 8b.is's memory ocean demonstration! This showcase implements concepts from our Mem|8
wave-based memory architecture paper, visualizing how memories propagate and interact like waves
in an ocean of consciousness.
> "Memory is not a storage unit, but a living ocean of waves" - Mem|8 Paper
""")
with gr.Row():
with gr.Column():
size_input = gr.Slider(
minimum=16,
maximum=128,
value=32,
step=16,
label="Memory Grid Size"
)
operation_input = gr.Radio(
["wave_memory", "interference", "resonance"],
label="Memory Wave Operation",
value="wave_memory",
info="Select the type of wave-based memory operation to visualize"
)
emotion_input = gr.Slider(
minimum=-128,
maximum=127,
value=0,
step=1,
label="Emotional Valence",
info="Emotional context from negative to positive (-128 to 127)"
)
with gr.Accordion("Advanced Settings", open=False):
generate_art = gr.Checkbox(
label="Generate Artistic Visualization",
value=True,
info="Use Stable Diffusion to create artistic representations"
)
seed = gr.Slider(
label="Art Generation Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42
)
run_btn = gr.Button("Generate Memory Wave", variant="primary")
with gr.Column():
output_text = gr.Textbox(label="Wave Analysis", lines=8)
with gr.Row():
wave_plot = gr.Plot(label="Wave Pattern")
art_output = gr.Image(label="Artistic Visualization")
run_btn.click(
quantum_memory_ops,
inputs=[size_input, operation_input, emotion_input, generate_art, seed],
outputs=[output_text, wave_plot, art_output]
)
gr.Markdown("""
### 🧠 Understanding Wave Memory
This demo visualizes three key concepts from our Mem|8 paper:
1. **Wave Memory**: Memories as propagating waves with emotional modulation
2. **Interference**: How different memories interact and combine
3. **Resonance**: Emotional resonance patterns in memory formation
The visualization shows both the mathematical wave patterns and artistic interpretations,
demonstrating how emotional context affects memory formation and recall.
All computations are accelerated using Hugging Face's Zero GPU technology!
""")
demo.launch()