Spaces:
Sleeping
Sleeping
File size: 41,052 Bytes
8431c3b fd8930e 3033509 614ca0d f4f6007 124cef3 607becf b4e28c8 607becf 8431c3b 607becf b4e28c8 8431c3b b4e28c8 8431c3b 614ca0d 8431c3b 607becf 701f9bf 8431c3b 349493b 4c38863 701f9bf 4c38863 701f9bf 4c38863 349493b 4c38863 d7db9b7 4c38863 d7db9b7 701f9bf a1d1dab 701f9bf 4c38863 701f9bf 4c38863 607becf 8431c3b f4f6007 124cef3 f82de34 4c38863 f82de34 607becf 8431c3b 607becf f82de34 607becf f82de34 607becf f82de34 607becf f82de34 607becf f82de34 8431c3b 607becf 8431c3b f82de34 607becf 8431c3b f82de34 8431c3b f82de34 8431c3b f82de34 8431c3b 607becf 4c38863 f82de34 4c38863 f82de34 4c38863 8431c3b f82de34 8431c3b f82de34 8431c3b 4c38863 8431c3b 4c38863 8431c3b 4c38863 8431c3b 607becf f82de34 8431c3b f82de34 8431c3b 607becf 8431c3b 607becf 8431c3b f82de34 8431c3b 607becf 8431c3b f82de34 8431c3b 607becf 8431c3b f82de34 8431c3b 607becf 8431c3b f82de34 8431c3b 607becf f82de34 8431c3b 607becf 8431c3b 607becf 8431c3b b4e28c8 8431c3b b4e28c8 8431c3b 4c38863 8431c3b 607becf 8431c3b b4e28c8 8431c3b 124cef3 8431c3b 607becf 8431c3b 607becf 8431c3b 607becf f2a04c1 8431c3b f2a04c1 a1d1dab a34a6ab a1d1dab a34a6ab f2a04c1 a1d1dab f2a04c1 a1d1dab f2a04c1 a1d1dab f2a04c1 124cef3 4c38863 701f9bf 4c38863 8431c3b 4368f78 8431c3b 4368f78 8431c3b 124cef3 8431c3b f4f6007 8431c3b d7db9b7 8431c3b d7db9b7 4c38863 701f9bf 4c38863 d7db9b7 614ca0d d7db9b7 d8cb7f3 a34a6ab 614ca0d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
🌊 Mem|8 OceanMind Visualizer 🧠
=================================
A visually stunning implementation of the Mem|8 wave-based memory architecture.
This application creates an immersive experience to explore how memories propagate
and interact like waves in an ocean of consciousness.
Created by: Aye & Hue (with Trisha from Accounting keeping the numbers flowing)
"""
import spaces
import os
import gradio as gr
import torch
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import cm
import random
import time
from typing import Tuple, List, Dict, Optional, Union
import json
from datetime import datetime
import plotly.graph_objects as go
import plotly.express as px
from plotly.subplots import make_subplots
import colorsys
# Set seeds for reproducibility (but we'll allow for randomness too!)
RANDOM_SEED = 42
torch.manual_seed(RANDOM_SEED)
np.random.seed(RANDOM_SEED)
random.seed(RANDOM_SEED)
# Constants
DEFAULT_GRID_SIZE = 64
EMOTION_RANGE = (-5, 5) # Range for emotional valence
AROUSAL_RANGE = (0, 255) # Range for arousal
MAX_SEED = 999999999 # Maximum seed value for art generation
# Initialize everything on CPU first
device = "cpu" # Start on CPU, let spaces.GPU handle CUDA
STABLE_DIFFUSION_AVAILABLE = False
pipe = None
@spaces.GPU
def get_device():
"""Get the appropriate device for the current context."""
if torch.cuda.is_available():
return "cuda"
print("⚠️ Warning: CUDA not available, falling back to CPU")
return "cpu"
def init_stable_diffusion():
"""Initialize Stable Diffusion on CPU first."""
global STABLE_DIFFUSION_AVAILABLE, pipe
try:
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler
STABLE_DIFFUSION_AVAILABLE = True
try:
model_id = "stabilityai/stable-diffusion-xl-base-1.0"
print(f"🚀 Loading Stable Diffusion model: {model_id}")
pipe = DiffusionPipeline.from_pretrained(
model_id,
torch_dtype=torch.float32, # Use float32 consistently
use_safetensors=True,
variant="fp32" # Explicitly request fp32 variant
)
pipe.scheduler = FlowMatchEulerDiscreteScheduler.from_config(pipe.scheduler.config)
print("✨ Stable Diffusion loaded on CPU")
except Exception as e:
print(f"❌ Failed to initialize Stable Diffusion: {e}")
STABLE_DIFFUSION_AVAILABLE = False
pipe = None
except ImportError:
print("❌ diffusers package not available. Artistic visualization will be disabled.")
# Create a directory for memory snapshots if it doesn't exist
MEMORY_DIR = "memory_snapshots"
os.makedirs(MEMORY_DIR, exist_ok=True)
class EmotionalContext:
"""Implements Mem|8's emotional context structure."""
def __init__(self, device_str="cpu"):
self.device = device_str
self.valence = torch.zeros(1, device=device_str)
self.arousal = torch.zeros(1, device=device_str)
self.context = torch.zeros(1, device=device_str)
self.safety = torch.ones(1, device=device_str)
# Track emotional history for visualization
self.history = {
'valence': [],
'arousal': [],
'timestamps': []
}
def update(self, valence: float, arousal: Optional[float] = None):
"""Update emotional context with new values."""
# Convert inputs to tensors on the right device
if not isinstance(valence, torch.Tensor):
valence = torch.tensor([valence], device=self.device)
elif valence.device != self.device:
valence = valence.to(self.device)
self.valence = valence
# If arousal not provided, calculate based on valence
if arousal is None:
self.arousal = torch.abs(valence * 2)
else:
if not isinstance(arousal, torch.Tensor):
arousal = torch.tensor([arousal], device=self.device)
elif arousal.device != self.device:
arousal = arousal.to(self.device)
self.arousal = arousal
# Update history (use CPU values for storage)
self.history['valence'].append(float(self.valence.cpu().item()))
self.history['arousal'].append(float(self.arousal.cpu().item()))
self.history['timestamps'].append(time.time())
# Keep history at a reasonable size
if len(self.history['valence']) > 100:
self.history['valence'] = self.history['valence'][-100:]
self.history['arousal'] = self.history['arousal'][-100:]
self.history['timestamps'] = self.history['timestamps'][-100:]
def get_color_mapping(self) -> Tuple[float, float, float]:
"""Maps emotional state to RGB color values."""
# Get values from tensors (move to CPU for calculations)
valence = self.valence.cpu().item()
arousal = self.arousal.cpu().item()
# Normalize valence to 0-1 range for hue
norm_valence = (valence - EMOTION_RANGE[0]) / (EMOTION_RANGE[1] - EMOTION_RANGE[0])
# Normalize arousal to 0-1 range for saturation
norm_arousal = arousal / AROUSAL_RANGE[1]
# Convert HSV to RGB
rgb = colorsys.hsv_to_rgb(norm_valence, norm_arousal, 1.0)
return rgb
def to(self, device_str):
"""Move the context to a different device."""
if self.device == device_str:
return self
self.device = device_str
self.valence = self.valence.to(device_str)
self.arousal = self.arousal.to(device_str)
self.context = self.context.to(device_str)
self.safety = self.safety.to(device_str)
return self
def __str__(self) -> str:
"""String representation of emotional context."""
return f"EmotionalContext(valence={self.valence.cpu().item():.2f}, arousal={self.arousal.cpu().item():.2f})"
class MemoryWave:
"""
Implements the wave-based memory patterns from Mem|8 paper.
This class creates and manipulates wave patterns that represent memories,
allowing them to propagate, interfere, and resonate as described in the paper.
"""
def __init__(self,
size: int = DEFAULT_GRID_SIZE,
device_str: str = "cpu"):
"""
Initialize a memory wave system.
Args:
size: Size of the memory grid (NxN)
device_str: Device to use for computations (defaults to CPU)
"""
self.size = size
self.device = device_str
self.grid = torch.zeros((size, size), device=device_str)
self.emotion = EmotionalContext(device_str)
# Initialize coordinates for wave calculations
self.x = torch.linspace(0, 2*np.pi, size, device=device_str)
self.y = torch.linspace(0, 2*np.pi, size, device=device_str)
self.X, self.Y = torch.meshgrid(self.x, self.y, indexing='ij')
# Memory storage for different types
self.memory_types = {i: torch.zeros((size, size), device=device_str) for i in range(6)}
# History of wave states for animation
self.history = []
def to(self, device_str):
"""Move the wave system to a different device."""
if self.device == device_str:
return self
self.device = device_str
self.grid = self.grid.to(device_str)
self.emotion = self.emotion.to(device_str)
self.x = self.x.to(device_str)
self.y = self.y.to(device_str)
self.X = self.X.to(device_str)
self.Y = self.Y.to(device_str)
self.memory_types = {k: v.to(device_str) for k, v in self.memory_types.items()}
return self
def create_wave(self,
frequency: float,
amplitude: float,
phase: float = 0.0,
direction: str = "radial") -> torch.Tensor:
"""Create a wave pattern as described in Mem|8 paper."""
# Ensure we're on the right device
if not isinstance(frequency, torch.Tensor):
frequency = torch.tensor(frequency, device=self.device)
if not isinstance(amplitude, torch.Tensor):
amplitude = torch.tensor(amplitude, device=self.device)
if not isinstance(phase, torch.Tensor):
phase = torch.tensor(phase, device=self.device)
if direction == "radial":
# Radial waves emanating from center (like dropping a stone in water)
center_x, center_y = self.size/2, self.size/2
distance = torch.sqrt((self.X - center_x)**2 + (self.Y - center_y)**2)
wave = amplitude * torch.sin(frequency * distance + phase)
elif direction == "linear_x":
# Waves moving along x-axis
wave = amplitude * torch.sin(frequency * self.X + phase)
elif direction == "linear_y":
# Waves moving along y-axis
wave = amplitude * torch.sin(frequency * self.Y + phase)
elif direction == "spiral":
# Spiral wave pattern
center_x, center_y = self.size/2, self.size/2
distance = torch.sqrt((self.X - center_x)**2 + (self.Y - center_y)**2)
angle = torch.atan2(self.Y - center_y, self.X - center_x)
wave = amplitude * torch.sin(frequency * distance + 5 * angle + phase)
else:
raise ValueError(f"Unknown direction: {direction}")
return wave
def apply_emotional_modulation(self, wave: torch.Tensor) -> torch.Tensor:
"""Apply emotional modulation to a wave pattern."""
# Ensure wave is on the right device
if wave.device != self.device:
wave = wave.to(self.device)
# Emotional modulation formula from paper: M = A·exp(iωt-kx)·D·E
# We implement a simplified version where E is based on valence
valence_factor = self.emotion.valence / 128 # Normalize to -1 to 1 range
# Different modulation based on valence sign
if valence_factor > 0:
# Positive emotions enhance wave (amplify)
emotional_mod = torch.exp(valence_factor * wave)
else:
# Negative emotions suppress wave (dampen)
emotional_mod = 1 / torch.exp(torch.abs(valence_factor) * wave)
# Apply modulation
modulated_wave = wave * emotional_mod
return modulated_wave
def create_interference(self, wave1: torch.Tensor, wave2: torch.Tensor,
interference_type: str = "constructive") -> torch.Tensor:
"""Create interference between two memory waves."""
# Ensure waves are on the right device
if wave1.device != self.device:
wave1 = wave1.to(self.device)
if wave2.device != self.device:
wave2 = wave2.to(self.device)
if interference_type == "constructive":
# Simple addition for constructive interference
return wave1 + wave2
elif interference_type == "destructive":
# Subtraction for destructive interference
return wave1 - wave2
elif interference_type == "resonance":
# Multiplication for resonance
return wave1 * wave2
else:
raise ValueError(f"Unknown interference type: {interference_type}")
def apply_memory_blanket(self, wave: torch.Tensor, threshold: float = 0.5) -> torch.Tensor:
"""Apply the memory blanket concept."""
# Ensure wave is on the right device
if wave.device != self.device:
wave = wave.to(self.device)
if not isinstance(threshold, torch.Tensor):
threshold = torch.tensor(threshold, device=self.device)
# Calculate wave importance (amplitude)
importance = torch.abs(wave)
# Apply threshold filter (memory blanket)
filtered_wave = wave * (importance > threshold).float()
return filtered_wave
def store_memory(self, wave: torch.Tensor, memory_type: int = 0) -> None:
"""Store a wave pattern in memory."""
# Ensure wave is on the right device
if wave.device != self.device:
wave = wave.to(self.device)
# Store the wave pattern
self.memory_types[memory_type] = wave
# Add to history for animation (move to CPU for numpy conversion)
self.history.append(wave.cpu().numpy())
# Keep history at a reasonable size
if len(self.history) > 100:
self.history = self.history[-100:]
def generate_wave_memory(self,
emotion_valence: float,
wave_type: str = "radial",
frequency: float = 2.0,
amplitude: float = 1.0) -> Dict:
"""
Generate a wave memory pattern with emotional context.
Args:
emotion_valence: Emotional valence value
wave_type: Type of wave pattern
frequency: Wave frequency
amplitude: Wave amplitude
Returns:
Dict: Results including wave pattern and metrics
"""
# Update emotional context
self.emotion.update(emotion_valence)
# Create base wave pattern
wave = self.create_wave(frequency, amplitude, direction=wave_type)
# Apply emotional modulation
emotional_mod = self.apply_emotional_modulation(wave)
memory_state = wave * emotional_mod
# Store in memory
self.store_memory(memory_state, memory_type=0)
# Calculate metrics
metrics = {
"shape": memory_state.shape,
"emotional_modulation": emotional_mod.mean().item(),
"memory_coherence": torch.linalg.norm(memory_state).item(),
"max_amplitude": memory_state.max().item(),
"min_amplitude": memory_state.min().item(),
"mean_amplitude": memory_state.mean().item(),
}
return {
"wave": memory_state.cpu().numpy(),
"metrics": metrics,
"emotion": {
"valence": self.emotion.valence.item(),
"arousal": self.emotion.arousal.item(),
}
}
def generate_interference_pattern(self,
emotion_valence: float,
interference_type: str = "constructive",
freq1: float = 2.0,
freq2: float = 3.0,
amp1: float = 1.0,
amp2: float = 0.5) -> Dict:
"""
Generate interference between two memory waves.
Args:
emotion_valence: Emotional valence value
interference_type: Type of interference
freq1: Frequency of first wave
freq2: Frequency of second wave
amp1: Amplitude of first wave
amp2: Amplitude of second wave
Returns:
Dict: Results including interference pattern and metrics
"""
# Update emotional context
self.emotion.update(emotion_valence)
# Create two wave patterns
wave1 = self.create_wave(freq1, amp1, direction="radial")
wave2 = self.create_wave(freq2, amp2, direction="spiral")
# Create interference pattern
interference = self.create_interference(wave1, wave2, interference_type)
# Apply emotional weighting
emotional_weight = torch.sigmoid(self.emotion.valence/128) * interference
# Store in memory
self.store_memory(emotional_weight, memory_type=1)
# Calculate metrics
metrics = {
"pattern_strength": torch.max(emotional_weight).item(),
"emotional_weight": self.emotion.valence.item()/128,
"interference_type": interference_type,
"wave1_freq": freq1,
"wave2_freq": freq2,
}
return {
"wave": emotional_weight.cpu().numpy(),
"metrics": metrics,
"emotion": {
"valence": self.emotion.valence.item(),
"arousal": self.emotion.arousal.item(),
}
}
def generate_resonance_pattern(self,
emotion_valence: float,
base_freq: float = 2.0,
resonance_strength: float = 0.5) -> Dict:
"""
Generate emotional resonance patterns as described in the paper.
Args:
emotion_valence: Emotional valence value
base_freq: Base frequency
resonance_strength: Strength of resonance effect
Returns:
Dict: Results including resonance pattern and metrics
"""
# Update emotional context
self.emotion.update(emotion_valence)
# Calculate resonance frequency based on emotional state
resonance_freq = 1.0 + torch.sigmoid(self.emotion.valence/128)
# Create wave patterns
base_wave = self.create_wave(base_freq, 1.0, direction="radial")
resonant_wave = self.create_wave(resonance_freq.item(), 1.0, direction="spiral")
# Create resonance
resonance = base_wave * resonant_wave * resonance_strength
# Store in memory
self.store_memory(resonance, memory_type=2)
# Calculate metrics
metrics = {
"resonance_frequency": resonance_freq.item(),
"pattern_energy": torch.sum(resonance**2).item(),
"base_frequency": base_freq,
"resonance_strength": resonance_strength,
}
return {
"wave": resonance.cpu().numpy(),
"metrics": metrics,
"emotion": {
"valence": self.emotion.valence.item(),
"arousal": self.emotion.arousal.item(),
}
}
def generate_memory_reconstruction(self,
emotion_valence: float,
corruption_level: float = 0.3) -> Dict:
"""
Generate memory reconstruction as described in the paper.
This simulates how Mem|8 reconstructs complete memories from partial patterns,
similar to how digital cameras reconstruct full-color images from partial sensor data.
Args:
emotion_valence: Emotional valence value
corruption_level: Level of corruption in the original memory (0-1)
Returns:
Dict: Results including original, corrupted and reconstructed patterns
"""
# Update emotional context
self.emotion.update(emotion_valence)
# Create an original "memory" pattern
original = self.create_wave(2.0, 1.0, direction="radial")
# Create a corruption mask (1 = keep, 0 = corrupt)
mask = torch.rand_like(original) > corruption_level
# Apply corruption
corrupted = original * mask
# Reconstruct using a simple interpolation
# In a real implementation, this would use more sophisticated algorithms
reconstructed = torch.zeros_like(corrupted)
# Simple 3x3 kernel averaging for missing values
for i in range(1, self.size-1):
for j in range(1, self.size-1):
if not mask[i, j]:
# If this point is corrupted, reconstruct it
neighbors = [
original[i-1, j-1] if mask[i-1, j-1] else 0,
original[i-1, j] if mask[i-1, j] else 0,
original[i-1, j+1] if mask[i-1, j+1] else 0,
original[i, j-1] if mask[i, j-1] else 0,
original[i, j+1] if mask[i, j+1] else 0,
original[i+1, j-1] if mask[i+1, j-1] else 0,
original[i+1, j] if mask[i+1, j] else 0,
original[i+1, j+1] if mask[i+1, j+1] else 0,
]
valid_neighbors = [n for n in neighbors if n != 0]
if valid_neighbors:
reconstructed[i, j] = sum(valid_neighbors) / len(valid_neighbors)
else:
# If this point is not corrupted, keep original value
reconstructed[i, j] = original[i, j]
# Apply emotional coloring to reconstruction
emotional_factor = torch.sigmoid(self.emotion.valence/64)
colored_reconstruction = reconstructed * emotional_factor
# Store in memory
self.store_memory(colored_reconstruction, memory_type=3)
# Calculate metrics
reconstruction_error = torch.mean((original - reconstructed)**2).item()
emotional_influence = emotional_factor.item()
metrics = {
"corruption_level": corruption_level,
"reconstruction_error": reconstruction_error,
"emotional_influence": emotional_influence,
"reconstruction_fidelity": 1.0 - reconstruction_error,
}
return {
"original": original.cpu().numpy(),
"corrupted": corrupted.cpu().numpy(),
"reconstructed": reconstructed.cpu().numpy(),
"colored": colored_reconstruction.cpu().numpy(),
"metrics": metrics,
"emotion": {
"valence": self.emotion.valence.item(),
"arousal": self.emotion.arousal.item(),
}
}
def generate_hot_tub_simulation(self,
emotion_valence: float,
comfort_level: float = 0.8,
exploration_depth: float = 0.5) -> Dict:
"""
Simulate the Hot Tub Mode concept from the paper.
Hot Tub Mode provides a safe space for exploring alternate paths and difficult scenarios
without judgment or permanent consequence.
Args:
emotion_valence: Emotional valence value
comfort_level: Safety threshold (0-1)
exploration_depth: How deep to explore alternate patterns (0-1)
Returns:
Dict: Results including safe exploration patterns and metrics
"""
# Update emotional context
self.emotion.update(emotion_valence)
# Create base safe space wave (calm, regular pattern)
safe_space = self.create_wave(1.0, 0.5, direction="radial")
# Create exploration waves with increasing complexity
exploration_waves = []
for i in range(3): # Three levels of exploration
freq = 1.0 + (i + 1) * exploration_depth
wave = self.create_wave(freq, 0.5 * (1 - i * 0.2), direction="spiral")
exploration_waves.append(wave)
# Combine waves based on comfort level
combined = safe_space * comfort_level
for i, wave in enumerate(exploration_waves):
# Reduce influence of more complex patterns based on comfort
influence = comfort_level * (1 - i * 0.3)
combined += wave * influence
# Apply emotional safety modulation (S = αC + βE + γD + δL from paper)
alpha = 0.4 # Comfort weight
beta = 0.3 # Emotional weight
gamma = 0.2 # Divergence weight
delta = 0.1 # Lifeguard weight
comfort_factor = torch.sigmoid(torch.tensor(comfort_level * 5))
emotional_factor = torch.sigmoid(self.emotion.valence/128 + 0.5)
divergence = torch.abs(combined - safe_space).mean()
lifeguard_signal = torch.sigmoid(-divergence + comfort_level)
safety_score = (alpha * comfort_factor +
beta * emotional_factor +
gamma * (1 - divergence) +
delta * lifeguard_signal)
# Apply safety modulation
safe_exploration = combined * safety_score
# Store in memory (if safe enough)
if safety_score > 0.7:
self.store_memory(safe_exploration, memory_type=4)
metrics = {
"safety_score": safety_score.item(),
"comfort_level": comfort_level,
"emotional_safety": emotional_factor.item(),
"divergence": divergence.item(),
"lifeguard_signal": lifeguard_signal.item(),
}
return {
"safe_space": safe_space.cpu().numpy(),
"exploration": combined.cpu().numpy(),
"safe_result": safe_exploration.cpu().numpy(),
"metrics": metrics,
"emotion": {
"valence": self.emotion.valence.item(),
"arousal": self.emotion.arousal.item(),
}
}
def visualize_wave_pattern(self, wave: np.ndarray, title: str = "Wave Pattern") -> go.Figure:
"""Create an interactive 3D visualization of a wave pattern."""
fig = go.Figure(data=[
go.Surface(
z=wave,
colorscale='viridis',
showscale=True
)
])
fig.update_layout(
title=title,
scene=dict(
xaxis_title="X",
yaxis_title="Y",
zaxis_title="Amplitude"
),
width=600,
height=600
)
return fig
def visualize_emotional_history(self) -> go.Figure:
"""Create a visualization of emotional history."""
fig = make_subplots(rows=2, cols=1,
subplot_titles=("Emotional Valence", "Emotional Arousal"))
# Convert timestamps to relative time
start_time = min(self.emotion.history['timestamps'])
times = [(t - start_time) for t in self.emotion.history['timestamps']]
# Plot valence
fig.add_trace(
go.Scatter(x=times, y=self.emotion.history['valence'],
mode='lines+markers',
name='Valence'),
row=1, col=1
)
# Plot arousal
fig.add_trace(
go.Scatter(x=times, y=self.emotion.history['arousal'],
mode='lines+markers',
name='Arousal'),
row=2, col=1
)
fig.update_layout(
height=800,
showlegend=True,
title_text="Emotional History"
)
return fig
def save_memory_snapshot(self, operation: str) -> str:
"""Save current memory state to disk."""
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"memory_{operation}_{timestamp}.json"
filepath = os.path.join(MEMORY_DIR, filename)
# Prepare data for saving
data = {
'operation': operation,
'timestamp': timestamp,
'emotion': {
'valence': float(self.emotion.valence.item()),
'arousal': float(self.emotion.arousal.item())
},
'memory_types': {
str(k): v.cpu().numpy().tolist()
for k, v in self.memory_types.items()
}
}
# Save to file
with open(filepath, 'w') as f:
json.dump(data, f)
return filepath
@spaces.GPU
def process_memory_operation(
memory_wave: MemoryWave,
operation: str,
emotion_valence: float,
grid_size: int = DEFAULT_GRID_SIZE,
comfort_level: float = 0.8,
exploration_depth: float = 0.5,
generate_art: bool = True,
seed: int = 42
) -> Tuple[str, go.Figure, go.Figure, Optional[np.ndarray]]:
"""Process memory operations with GPU acceleration."""
try:
# Move to GPU
memory_wave.to("cuda")
# Resize grid if needed
if grid_size != memory_wave.size:
memory_wave.__init__(size=grid_size, device="cuda")
# Process based on operation type
if operation == "wave_memory":
result = memory_wave.generate_wave_memory(emotion_valence)
wave_title = "Wave Memory Pattern"
wave_data = result["wave"]
elif operation == "interference":
result = memory_wave.generate_interference_pattern(emotion_valence)
wave_title = "Interference Pattern"
wave_data = result["wave"]
elif operation == "resonance":
result = memory_wave.generate_resonance_pattern(emotion_valence)
wave_title = "Resonance Pattern"
wave_data = result["wave"]
elif operation == "reconstruction":
result = memory_wave.generate_memory_reconstruction(emotion_valence)
wave_title = "Memory Reconstruction"
wave_data = result["reconstructed"]
elif operation == "hot_tub":
result = memory_wave.generate_hot_tub_simulation(
emotion_valence, comfort_level, exploration_depth
)
wave_title = "Hot Tub Exploration"
wave_data = result["safe_result"]
# Create visualizations
wave_plot = memory_wave.visualize_wave_pattern(wave_data, wave_title)
emotion_plot = memory_wave.visualize_emotional_history()
# Generate artistic visualization if requested
art_output = None
if generate_art and STABLE_DIFFUSION_AVAILABLE and pipe is not None:
prompt = generate_memory_prompt(operation, emotion_valence)
art_output = generate_art_with_gpu(prompt, seed)
# Format metrics for display
metrics = result["metrics"]
metrics_str = "📊 Analysis Results:\n\n"
for key, value in metrics.items():
if key == "shape":
metrics_str += f"• {key.replace('_', ' ').title()}: {list(value)}\n"
elif key == "interference_type": # Handle string values
metrics_str += f"• {key.replace('_', ' ').title()}: {value}\n"
elif isinstance(value, (int, float)): # Format numbers only
metrics_str += f"• {key.replace('_', ' ').title()}: {value:.4f}\n"
else:
metrics_str += f"• {key.replace('_', ' ').title()}: {value}\n"
metrics_str += f"\n🎭 Emotional Context:\n"
metrics_str += f"• Valence: {result['emotion']['valence']:.2f}\n"
metrics_str += f"• Arousal: {result['emotion']['arousal']:.2f}\n"
# Save memory snapshot
snapshot_path = memory_wave.save_memory_snapshot(operation)
metrics_str += f"\n💾 Memory snapshot saved: {snapshot_path}"
# Move back to CPU
memory_wave.to("cpu")
return metrics_str, wave_plot, emotion_plot, art_output
except torch.cuda.OutOfMemoryError:
print("⚠️ GPU out of memory - falling back to CPU")
memory_wave.to("cpu")
if pipe is not None:
pipe.to("cpu")
return process_memory_operation(
memory_wave, operation, emotion_valence, grid_size,
comfort_level, exploration_depth, generate_art, seed
)
except Exception as e:
print(f"❌ Error during processing: {e}")
# Ensure we're back on CPU
memory_wave.to("cpu")
if pipe is not None:
pipe.to("cpu")
return None, None, None, None
@spaces.GPU
def generate_art_with_gpu(prompt: str, seed: int = 42) -> Optional[np.ndarray]:
"""Generate art using Stable Diffusion with GPU acceleration."""
if not STABLE_DIFFUSION_AVAILABLE or pipe is None:
return None
try:
# Move to GPU and optimize
pipe.to("cuda", torch_dtype=torch.float32) # Ensure float32 on GPU
pipe.enable_model_cpu_offload()
pipe.enable_vae_slicing()
pipe.enable_vae_tiling()
pipe.enable_attention_slicing(slice_size="max")
# Generate image
generator = torch.Generator("cuda").manual_seed(seed) # Ensure generator is on CUDA
image = pipe(
prompt=prompt,
negative_prompt="text, watermark, signature, blurry, distorted",
guidance_scale=1.5,
num_inference_steps=8,
width=768,
height=768,
generator=generator,
).images[0]
# Move back to CPU
pipe.to("cpu")
return image
except Exception as e:
print(f"❌ Error generating art: {e}")
pipe.to("cpu")
return None
def generate_memory_prompt(operation: str, emotion_valence: float) -> str:
"""Generate an artistic prompt based on the memory operation and emotional context."""
# Base prompts for each operation type
operation_prompts = {
"wave_memory": "A serene ocean of consciousness with rippling waves of memory, ",
"interference": "Multiple waves of thought intersecting and creating intricate patterns, ",
"resonance": "Harmonious waves of memory resonating with emotional energy, ",
"reconstruction": "Fragments of memory waves reforming into a complete pattern, ",
"hot_tub": "A safe sanctuary of gentle memory waves with healing energy, "
}
# Emotional modifiers based on valence
if emotion_valence < -3:
emotion_desc = "dark and turbulent, with deep indigo and violet hues, expressing profound melancholy"
elif emotion_valence < -1:
emotion_desc = "muted and somber, with cool blues and grays, showing gentle sadness"
elif emotion_valence < 1:
emotion_desc = "balanced and neutral, with soft pastels, reflecting calm contemplation"
elif emotion_valence < 3:
emotion_desc = "warm and uplifting, with golden yellows and soft oranges, radiating joy"
else:
emotion_desc = "brilliant and ecstatic, with vibrant rainbow colors, bursting with happiness"
# Artistic style modifiers
style = (
"digital art in the style of a quantum visualization, "
"highly detailed, smooth gradients, "
"abstract yet meaningful, "
"inspired by neural networks and consciousness"
)
# Combine all elements
base_prompt = operation_prompts.get(operation, operation_prompts["wave_memory"])
prompt = f"{base_prompt}{emotion_desc}, {style}"
return prompt
def create_interface():
"""Create the Gradio interface for the Mem|8 Wave Memory Explorer."""
# Initialize everything on CPU
memory_wave = MemoryWave(device_str="cpu")
# Create the interface
with gr.Blocks(theme=gr.themes.Soft(primary_hue="purple", secondary_hue="blue")) as demo:
gr.Markdown("""
# 🌊 Mem|8 Wave Memory Explorer
Welcome to 8b.is's memory ocean demonstration! This showcase implements concepts from our Mem|8
wave-based memory architecture paper, visualizing how memories propagate and interact like waves
in an ocean of consciousness.
> "Memory is not a storage unit, but a living ocean of waves" - Mem|8 Paper
""")
with gr.Row():
with gr.Column(scale=1):
operation_input = gr.Radio(
["wave_memory", "interference", "resonance", "reconstruction", "hot_tub"],
label="Memory Operation",
value="wave_memory",
info="Select the type of memory operation to visualize"
)
emotion_input = gr.Slider(
minimum=EMOTION_RANGE[0],
maximum=EMOTION_RANGE[1],
value=0,
step=1,
label="Emotional Valence",
info="Emotional context from negative to positive"
)
grid_size = gr.Slider(
minimum=16,
maximum=128,
value=DEFAULT_GRID_SIZE,
step=16,
label="Memory Grid Size"
)
with gr.Accordion("Advanced Settings", open=False):
comfort_level = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.8,
label="Comfort Level",
info="Safety threshold for Hot Tub Mode"
)
exploration_depth = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.5,
label="Exploration Depth",
info="How deep to explore in Hot Tub Mode"
)
generate_art = gr.Checkbox(
label="Generate Artistic Visualization",
value=True,
info="Use Stable Diffusion to create artistic representations"
)
seed = gr.Slider(
label="Art Generation Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42
)
run_btn = gr.Button("Generate Memory Wave", variant="primary")
with gr.Column(scale=2):
output_text = gr.Textbox(label="Analysis Results", lines=10)
with gr.Row():
wave_plot = gr.Plot(label="Wave Pattern")
emotion_plot = gr.Plot(label="Emotional History")
art_output = gr.Image(label="Artistic Visualization", visible=STABLE_DIFFUSION_AVAILABLE)
# Set up event handlers
def process_with_memory_wave(*args):
"""Wrapper to ensure memory_wave is passed as first argument."""
return process_memory_operation(memory_wave, *args)
run_btn.click(
process_with_memory_wave, # Use wrapper function
inputs=[
operation_input,
emotion_input,
grid_size,
comfort_level,
exploration_depth,
generate_art,
seed
],
outputs=[output_text, wave_plot, emotion_plot, art_output]
)
gr.Markdown("""
### 🧠 Understanding Wave Memory
This demo visualizes key concepts from our Mem|8 paper:
1. **Wave Memory**: Memories as propagating waves with emotional modulation
2. **Interference**: How different memories interact and combine
3. **Resonance**: Emotional resonance patterns in memory formation
4. **Reconstruction**: How memories are rebuilt from partial patterns
5. **Hot Tub Mode**: Safe exploration of memory patterns
The visualization shows mathematical wave patterns, emotional history, and artistic
interpretations of how memories flow through our consciousness.
All computations are accelerated using Hugging Face's Zero GPU technology!
""")
return demo
if __name__ == "__main__":
# Configure Gradio for Hugging Face Spaces
demo = create_interface()
# Initialize Stable Diffusion on CPU first
init_stable_diffusion()
# Enable queuing for better resource management
demo.queue(max_size=10)
# Launch with Spaces-compatible settings
demo.launch(
server_name="0.0.0.0", # Listen on all interfaces
server_port=7860, # Default Spaces port
show_api=False, # Hide API docs
max_threads=10, # Limit to 10 threads
ssr=False # Disable SSR for better stability
)
|