Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
import streamlit as st
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
3 |
|
4 |
# Load the model and tokenizer
|
5 |
model_name = "GRMenon/mental-health-mistral-7b-instructv0.2-finetuned-V2"
|
@@ -11,7 +12,10 @@ def get_bot_response(user_input):
|
|
11 |
inputs = tokenizer.encode(user_input, return_tensors="pt")
|
12 |
|
13 |
# Generate response
|
14 |
-
|
|
|
|
|
|
|
15 |
|
16 |
# Decode and return response
|
17 |
return tokenizer.decode(bot_response[0], skip_special_tokens=True)
|
|
|
1 |
import streamlit as st
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
import torch
|
4 |
|
5 |
# Load the model and tokenizer
|
6 |
model_name = "GRMenon/mental-health-mistral-7b-instructv0.2-finetuned-V2"
|
|
|
12 |
inputs = tokenizer.encode(user_input, return_tensors="pt")
|
13 |
|
14 |
# Generate response
|
15 |
+
try:
|
16 |
+
bot_response = model.generate(inputs, max_length=100, num_return_sequences=1)
|
17 |
+
except Exception as e:
|
18 |
+
return f"Sorry, an error occurred while generating a response: {e}"
|
19 |
|
20 |
# Decode and return response
|
21 |
return tokenizer.decode(bot_response[0], skip_special_tokens=True)
|