import gradio as gr from huggingface_hub import InferenceClient # Initialize the model and tokenizer client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") # Define the conversation flow def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): #... (rest of the code remains the same) # Create the chat interface demo = gr.ChatInterface( respond, title="NVS AI: Health Conversational Chatbot", description="Get answers to your health-related questions!", additional_inputs=[ gr.Textbox(value="You are a friendly health chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) # Add custom CSS to customize the theme css = """ body { background-color: #f9f9f9; } .gradio-container { max-width: 800px; margin: 40px auto; padding: 20px; border: 1px solid #ddd; border-radius: 10px; box-shadow: 0 0 10px rgba(0, 0, 0, 0.1); } .gradio-input { background-color: #fff; border: 1px solid #ccc; padding: 10px; border-radius: 10px; } .gradio-button { background-color: #3498db; color: #fff; border: none; padding: 10px 20px; border-radius: 10px; cursor: pointer; } .gradio-button:hover { background-color: #2980b9; } """ demo.css(css) if __name__ == "__main__": demo.launch()