File size: 1,851 Bytes
2661bcf
 
 
3825247
2661bcf
 
3825247
2661bcf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3825247
 
 
 
 
 
 
 
 
 
2661bcf
 
3825247
 
2661bcf
3825247
2661bcf
 
 
 
 
 
 
 
 
 
3825247
2661bcf
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import gradio as gr
from huggingface_hub import InferenceClient

# Initialize the model and tokenizer
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")

# Define the conversation flow
def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    messages = [{"role": "system", "content": system_message}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})

    response = ""

    for message in client.chat_completion(
        messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        token = message.choices[0].delta.content

        response += token
        yield response

# Create a custom theme for the chat interface
theme = gr.Theme(
    primary_color="#3498db",
    secondary_color="#f1c40f",
    background_color="#f9f9f9",
    text_color="#333",
    font="Open Sans",
)

# Create the chat interface
demo = gr.ChatInterface(
    respond,
    title="NVS AI: Health Conversational Chatbot",
    description="Get answers to your health-related questions!",
    additional_inputs=[
        gr.Textbox(value="You are a friendly health chatbot.", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)",
        ),
    ],
    theme=theme,
)

if __name__ == "__main__":
    demo.launch()