en2he / app.py
amitkot's picture
Duplicate from amitkot/he2en
891562c
raw
history blame
371 Bytes
import gradio as gr
from transformers import pipeline
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-mul-en")
def predict(text):
return pipe(text)[0]["translation_text"]
title = "Hebrew to English Translation"
iface = gr.Interface(
fn=predict,
inputs=[gr.inputs.Textbox(label="text", lines=3)],
outputs='text',
title=title,
)
iface.launch()