amish1729 commited on
Commit
c3e9ecb
·
1 Parent(s): 5751c0d

Delete utils/data_generator.py

Browse files
Files changed (1) hide show
  1. utils/data_generator.py +0 -151
utils/data_generator.py DELETED
@@ -1,151 +0,0 @@
1
- import copy
2
- import dlib
3
- import os
4
- import bz2
5
- import random
6
- from tqdm.notebook import tqdm
7
- import shutil
8
- from utils import image_to_array, load_image, download_data
9
- from utils.face_detection import crop_face, get_face_keypoints_detecting_function
10
- from mask_utils.mask_utils import mask_image
11
-
12
-
13
- class DataGenerator:
14
- def __init__(self, configuration):
15
- self.configuration = configuration
16
- self.path_to_data = configuration.get('input_images_path')
17
- self.path_to_patterns = configuration.get('path_to_patterns')
18
- self.minimal_confidence = configuration.get('minimal_confidence')
19
- self.hyp_ratio = configuration.get('hyp_ratio')
20
- self.coordinates_range = configuration.get('coordinates_range')
21
- self.test_image_count = configuration.get('test_image_count')
22
- self.train_image_count = configuration.get('train_image_count')
23
- self.train_data_path = configuration.get('train_data_path')
24
- self.test_data_path = configuration.get('test_data_path')
25
- self.predictor_path = configuration.get('landmarks_predictor_path')
26
- self.check_predictor()
27
-
28
- self.valid_image_extensions = ('png', 'jpg', 'jpeg')
29
- self.face_keypoints_detecting_fun = get_face_keypoints_detecting_function(self.minimal_confidence)
30
-
31
- def check_predictor(self):
32
- """ Check if predictor exists. If not downloads it. """
33
- if not os.path.exists(self.predictor_path):
34
- print('Downloading missing predictor.')
35
- url = self.configuration.get('landmarks_predictor_download_url')
36
- download_data(url, self.predictor_path + '.bz2', 64040097)
37
- print(f'Decompressing downloaded file into {self.predictor_path}')
38
- with bz2.BZ2File(self.predictor_path + '.bz2') as fr, open(self.predictor_path, 'wb') as fw:
39
- shutil.copyfileobj(fr, fw)
40
-
41
- def get_face_landmarks(self, image):
42
- """Compute 68 facial landmarks"""
43
- landmarks = []
44
- image_array = image_to_array(image)
45
- detector = dlib.get_frontal_face_detector()
46
- predictor = dlib.shape_predictor(self.predictor_path)
47
- face_rectangles = detector(image_array)
48
- if len(face_rectangles) < 1:
49
- return None
50
- dlib_shape = predictor(image_array, face_rectangles[0])
51
- for i in range(0, dlib_shape.num_parts):
52
- landmarks.append([dlib_shape.part(i).x, dlib_shape.part(i).y])
53
- return landmarks
54
-
55
- def get_files_faces(self):
56
- """Get path of all images in dataset"""
57
- image_files = []
58
- for dirpath, dirs, files in os.walk(self.path_to_data):
59
- for filename in files:
60
- fname = os.path.join(dirpath, filename)
61
- if fname.endswith(self.valid_image_extensions):
62
- image_files.append(fname)
63
-
64
- return image_files
65
-
66
- def generate_images(self, image_size=None, test_image_count=None, train_image_count=None):
67
- """Generate test and train data (images with and without the mask)"""
68
- if image_size is None:
69
- image_size = self.configuration.get('image_size')
70
- if test_image_count is None:
71
- test_image_count = self.test_image_count
72
- if train_image_count is None:
73
- train_image_count = self.train_image_count
74
-
75
- if not os.path.exists(self.train_data_path):
76
- os.mkdir(self.train_data_path)
77
- os.mkdir(os.path.join(self.train_data_path, 'inputs'))
78
- os.mkdir(os.path.join(self.train_data_path, 'outputs'))
79
-
80
- if not os.path.exists(self.test_data_path):
81
- os.mkdir(self.test_data_path)
82
- os.mkdir(os.path.join(self.test_data_path, 'inputs'))
83
- os.mkdir(os.path.join(self.test_data_path, 'outputs'))
84
-
85
- print('Generating testing data')
86
- self.generate_data(test_image_count,
87
- image_size=image_size,
88
- save_to=self.test_data_path)
89
- print('Generating training data')
90
- self.generate_data(train_image_count,
91
- image_size=image_size,
92
- save_to=self.train_data_path)
93
-
94
- def generate_data(self, number_of_images, image_size=None, save_to=None):
95
- """ Add masks on `number_of_images` images
96
- if save_to is valid path to folder images are saved there otherwise generated data are just returned in list
97
- """
98
- inputs = []
99
- outputs = []
100
-
101
- if image_size is None:
102
- image_size = self.configuration.get('image_size')
103
-
104
- for i, file in tqdm(enumerate(random.sample(self.get_files_faces(), number_of_images)), total=number_of_images):
105
- # Load images
106
- image = load_image(file)
107
-
108
- # Detect keypoints and landmarks on face
109
- face_landmarks = self.get_face_landmarks(image)
110
- if face_landmarks is None:
111
- continue
112
- keypoints = self.face_keypoints_detecting_fun(image)
113
-
114
- # Generate mask
115
- image_with_mask = mask_image(copy.deepcopy(image), face_landmarks, self.configuration)
116
-
117
- # Crop images
118
- cropped_image = crop_face(image_with_mask, keypoints)
119
- cropped_original = crop_face(image, keypoints)
120
-
121
- # Resize all images to NN input size
122
- res_image = cropped_image.resize(image_size)
123
- res_original = cropped_original.resize(image_size)
124
-
125
- # Save generated data to lists or to folder
126
- if save_to is None:
127
- inputs.append(res_image)
128
- outputs.append(res_original)
129
- else:
130
- res_image.save(os.path.join(save_to, 'inputs', f"{i:06d}.png"))
131
- res_original.save(os.path.join(save_to, 'outputs', f"{i:06d}.png"))
132
-
133
- if save_to is None:
134
- return inputs, outputs
135
-
136
- def get_dataset_examples(self, n=10, test_dataset=False):
137
- """
138
- Returns `n` random images form dataset. If `test_dataset` parameter
139
- is not provided or False it will return images from training part of dataset.
140
- If `test_dataset` parameter is True it will return images from testing part of dataset.
141
- """
142
- if test_dataset:
143
- data_path = self.test_data_path
144
- else:
145
- data_path = self.train_data_path
146
-
147
- images = os.listdir(os.path.join(data_path, 'inputs'))
148
- images = random.sample(images, n)
149
- inputs = [os.path.join(data_path, 'inputs', img) for img in images]
150
- outputs = [os.path.join(data_path, 'outputs', img) for img in images]
151
- return inputs, outputs