File size: 13,145 Bytes
232568e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
from abc import ABC, abstractmethod
from enum import Enum
from typing import Tuple, Optional

import tensorflow as tf
from tensorflow.keras.layers import *
from tensorflow.keras.models import *

class BaseUNet(ABC):
    """
    Base Interface for UNet
    """

    def __init__(self, model: Model):
        self.model: Model = model

    def get_model(self):
        return self.model

    @staticmethod
    @abstractmethod
    def build_model(input_size: Tuple[int, int, int], filters: Tuple, kernels: Tuple):
        pass


class UNet(Enum):
    """
    Enum class defining different architecture types available
    """
    DEFAULT = 0
    DEFAULT_IMAGENET_EMBEDDING = 1
    RESNET = 3
    RESIDUAL_ATTENTION_UNET_SEPARABLE_CONV = 4

    def build_model(self, input_size: Tuple[int, int, int], filters: Optional[Tuple] = None,
                    kernels: Optional[Tuple] = None) -> BaseUNet:

        # set default filters
        if filters is None:
            filters = (16, 32, 64, 128, 256)

        # set default kernels
        if kernels is None:
            kernels = list(3 for _ in range(len(filters)))

        # check kernels and filters
        if len(filters) != len(kernels):
            raise Exception('Kernels and filter count has to match.')

        if self == UNet.DEFAULT_IMAGENET_EMBEDDING:
            print('Using default UNet model with imagenet embedding')
            return UNetDefault.build_model(input_size, filters, kernels, use_embedding=True)
        elif self == UNet.RESNET:
            print('Using UNet Resnet model')
            return UNet_resnet.build_model(input_size, filters, kernels)
        elif self == UNet.RESIDUAL_ATTENTION_UNET_SEPARABLE_CONV:
            print('Using UNet Resnet model with attention mechanism and separable convolutions')
            return UNet_ResNet_Attention_SeparableConv.build_model(input_size, filters, kernels)

        print('Using default UNet model')
        return UNetDefault.build_model(input_size, filters, kernels, use_embedding=False)
    

class Attention(Layer):
    def __init__(self, **kwargs):
        super(Attention, self).__init__(**kwargs)

    def build(self, input_shape):
        # Create a trainable weight variable for this layer.
        self.kernel = self.add_weight(name='kernel', 
                                    shape=(input_shape[-1], 1),
                                    initializer='glorot_normal',
                                    trainable=True)
        self.bias = self.add_weight(name='bias',
                                   shape=(1,),
                                   initializer='zeros',
                                   trainable=True)
        super(Attention, self).build(input_shape)  # Be sure to call this at the end

    def call(self, x):
        attention = tf.nn.softmax(tf.matmul(x, self.kernel) + self.bias, axis=-1)
        return tf.multiply(x, attention)

    def compute_output_shape(self, input_shape):
        return input_shape


class UNet_ResNet_Attention_SeparableConv(BaseUNet):
    """
    UNet architecture with resnet blocks, attention mechanism and separable convolutions
    """
    @staticmethod
    def build_model(input_size: Tuple[int, int, int], filters: Tuple, kernels: Tuple):

        p0 = Input(shape=input_size)
        conv_outputs = []
        first_layer = SeparableConv2D(filters[0], kernels[0], padding='same')(p0)
        int_layer = first_layer
        for i, f in enumerate(filters):
            int_layer, skip = UNet_ResNet_Attention_SeparableConv.down_block(int_layer, f, kernels[i])
            conv_outputs.append(skip)

        int_layer = UNet_ResNet_Attention_SeparableConv.bottleneck(int_layer, filters[-1], kernels[-1])

        conv_outputs = list(reversed(conv_outputs))
        reversed_filter = list(reversed(filters))
        reversed_kernels = list(reversed(kernels))
        for i, f in enumerate(reversed_filter):
            if i + 1 < len(reversed_filter):
                num_filters_next = reversed_filter[i + 1]
                num_kernels_next = reversed_kernels[i + 1]
            else:
                num_filters_next = f
                num_kernels_next = reversed_kernels[i]
            int_layer = UNet_ResNet_Attention_SeparableConv.up_block(int_layer, conv_outputs[i], f, num_filters_next, num_kernels_next)
            int_layer = Attention()(int_layer)
            
        # concat. with the first layer
        int_layer = Concatenate()([first_layer, int_layer])
        int_layer = SeparableConv2D(filters[0], kernels[0], padding="same", activation="relu")(int_layer)
        outputs = SeparableConv2D(3, (1, 1), padding="same", activation="sigmoid")(int_layer)
        model = Model(p0, outputs)
        return UNet_ResNet_Attention_SeparableConv(model)

    @staticmethod
    def down_block(x, num_filters: int = 64, kernel: int = 3):
        # down-sample inputs
        x = SeparableConv2D(num_filters, kernel, padding='same', strides=2, dilation_rate = 2)(x)

        # inner block
        out = SeparableConv2D(num_filters, kernel, padding='same')(x)
        # out = BatchNormalization()(out)
        out = Activation('relu')(out)
        out = SeparableConv2D(num_filters, kernel, padding='same')(out)

        # merge with the skip connection
        out = Add()([out, x])
        # out = BatchNormalization()(out)
        return Activation('relu')(out), x

    @staticmethod
    def up_block(x, skip, num_filters: int = 64, num_filters_next: int = 64, kernel: int = 3):
        # add U-Net skip connection - before up-sampling
        concat = Concatenate()([x, skip])

        # inner block
        out = SeparableConv2D(num_filters, kernel, padding='same', dilation_rate = 2)(concat)
        # out = BatchNormalization()(out)
        out = Activation('relu')(out)
        out = SeparableConv2D(num_filters, kernel, padding='same')(out)

        # merge with the skip connection
        out = Add()([out, x])
        # out = BatchNormalization()(out)
        out = Activation('relu')(out)

        # up-sample
        out = UpSampling2D((2, 2))(out)
        out = SeparableConv2D(num_filters_next, kernel, padding='same')(out)
        # out = BatchNormalization()(out)
        return Activation('relu')(out)

    @staticmethod
    def bottleneck(x, num_filters: int = 64, kernel: int = 3):
        # inner block
        out = SeparableConv2D(num_filters, kernel, padding='same', dilation_rate = 2)(x)
        # out = BatchNormalization()(out)
        out = Activation('relu')(out)
        out = SeparableConv2D(num_filters, kernel, padding='same')(out)
        out = Add()([out, x])
        # out = BatchNormalization()(out)
        return Activation('relu')(out)

    






# Class for UNet with Resnet blocks

class UNet_resnet(BaseUNet):
    """
    UNet architecture with resnet blocks
    """

    @staticmethod
    def build_model(input_size: Tuple[int, int, int], filters: Tuple, kernels: Tuple):

        p0 = Input(shape=input_size)
        conv_outputs = []
        first_layer = Conv2D(filters[0], kernels[0], padding='same')(p0)
        int_layer = first_layer
        for i, f in enumerate(filters):
            int_layer, skip = UNet_resnet.down_block(int_layer, f, kernels[i])
            conv_outputs.append(skip)

        int_layer = UNet_resnet.bottleneck(int_layer, filters[-1], kernels[-1])

        conv_outputs = list(reversed(conv_outputs))
        reversed_filter = list(reversed(filters))
        reversed_kernels = list(reversed(kernels))
        for i, f in enumerate(reversed_filter):
            if i + 1 < len(reversed_filter):
                num_filters_next = reversed_filter[i + 1]
                num_kernels_next = reversed_kernels[i + 1]
            else:
                num_filters_next = f
                num_kernels_next = reversed_kernels[i]
            int_layer = UNet_resnet.up_block(int_layer, conv_outputs[i], f, num_filters_next, num_kernels_next)

        # concat. with the first layer
        int_layer = Concatenate()([first_layer, int_layer])
        int_layer = Conv2D(filters[0], kernels[0], padding="same", activation="relu")(int_layer)
        outputs = Conv2D(3, (1, 1), padding="same", activation="sigmoid")(int_layer)
        model = Model(p0, outputs)
        return UNet_resnet(model)

    @staticmethod
    def down_block(x, num_filters: int = 64, kernel: int = 3):
        # down-sample inputs
        x = Conv2D(num_filters, kernel, padding='same', strides=2)(x)

        # inner block
        out = Conv2D(num_filters, kernel, padding='same')(x)
        # out = BatchNormalization()(out)
        out = Activation('relu')(out)
        out = Conv2D(num_filters, kernel, padding='same')(out)

        # merge with the skip connection
        out = Add()([out, x])
        # out = BatchNormalization()(out)
        return Activation('relu')(out), x

    @staticmethod
    def up_block(x, skip, num_filters: int = 64, num_filters_next: int = 64, kernel: int = 3):

        # add U-Net skip connection - before up-sampling
        concat = Concatenate()([x, skip])

        # inner block
        out = Conv2D(num_filters, kernel, padding='same')(concat)
        # out = BatchNormalization()(out)
        out = Activation('relu')(out)
        out = Conv2D(num_filters, kernel, padding='same')(out)

        # merge with the skip connection
        out = Add()([out, x])
        # out = BatchNormalization()(out)
        out = Activation('relu')(out)

        # add U-Net skip connection - before up-sampling
        concat = Concatenate()([out, skip])

        # up-sample
        # out = UpSampling2D((2, 2))(concat)
        out = Conv2DTranspose(num_filters_next, kernel, padding='same', strides=2)(concat)
        out = Conv2D(num_filters_next, kernel, padding='same')(out)
        # out = BatchNormalization()(out)
        return Activation('relu')(out)

    @staticmethod
    def bottleneck(x, filters, kernel: int = 3):
        x = Conv2D(filters, kernel, padding='same', name='bottleneck')(x)
        # x = BatchNormalization()(x)
        return Activation('relu')(x)


class UNetDefault(BaseUNet):
    """
     UNet architecture from following github notebook for image segmentation:
    https://github.com/nikhilroxtomar/UNet-Segmentation-in-Keras-TensorFlow/blob/master/unet-segmentation.ipynb
    https://github.com/nikhilroxtomar/Polyp-Segmentation-using-UNET-in-TensorFlow-2.0
    """

    @staticmethod
    def build_model(input_size: Tuple[int, int, int], filters: Tuple, kernels: Tuple, use_embedding: bool = True):

        p0 = Input(input_size)

        if use_embedding:
            mobilenet_model = tf.keras.applications.MobileNetV2(
                input_shape=input_size, include_top=False, weights='imagenet'
            )
            mobilenet_model.trainable = False
            mn1 = mobilenet_model(p0)
            mn1 = Reshape((16, 16, 320))(mn1)

        conv_outputs = []
        int_layer = p0

        for f in filters:
            conv_output, int_layer = UNetDefault.down_block(int_layer, f)
            conv_outputs.append(conv_output)

        int_layer = UNetDefault.bottleneck(int_layer, filters[-1])

        if use_embedding:
            int_layer = Concatenate()([int_layer, mn1])

        conv_outputs = list(reversed(conv_outputs))
        for i, f in enumerate(reversed(filters)):
            int_layer = UNetDefault.up_block(int_layer, conv_outputs[i], f)

        int_layer = Conv2D(filters[0] // 2, 3, padding="same", activation="relu")(int_layer)
        outputs = Conv2D(3, (1, 1), padding="same", activation="sigmoid")(int_layer)
        model = Model(p0, outputs)
        return UNetDefault(model)

    @staticmethod
    def down_block(x, filters, kernel_size=(3, 3), padding="same", strides=1):
        c = Conv2D(filters, kernel_size, padding=padding, strides=strides, activation="relu")(x)
        # c = BatchNormalization()(c)
        p = MaxPool2D((2, 2), (2, 2))(c)
        return c, p

    @staticmethod
    def up_block(x, skip, filters, kernel_size=(3, 3), padding="same", strides=1):
        us = UpSampling2D((2, 2))(x)
        c = Conv2D(filters, kernel_size, padding=padding, strides=strides, activation="relu")(us)
        # c = BatchNormalization()(c)
        concat = Concatenate()([c, skip])
        c = Conv2D(filters, kernel_size, padding=padding, strides=strides, activation="relu")(concat)
        # c = BatchNormalization()(c)
        return c

    @staticmethod
    def bottleneck(x, filters, kernel_size=(3, 3), padding="same", strides=1):
        c = Conv2D(filters, kernel_size, padding=padding, strides=strides, activation="relu")(x)
        # c = BatchNormalization()(c)
        return c


if __name__ == "__main__":
    filters = (64, 128, 128, 256, 256, 512)
    kernels = (7, 7, 7, 3, 3, 3)
    input_image_size = (256, 256, 3)
    # model = UNet_resnet()
    # model = model.build_model(input_size=input_image_size,filters=filters,kernels=kernels)
    # print(model.summary())
    # __init__() missing 1 required positional argument: 'model'
    model = UNetDefault.build_model(input_size=input_image_size, filters=filters, kernels=kernels)
    print(model.summary())