File size: 13,145 Bytes
232568e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 |
from abc import ABC, abstractmethod
from enum import Enum
from typing import Tuple, Optional
import tensorflow as tf
from tensorflow.keras.layers import *
from tensorflow.keras.models import *
class BaseUNet(ABC):
"""
Base Interface for UNet
"""
def __init__(self, model: Model):
self.model: Model = model
def get_model(self):
return self.model
@staticmethod
@abstractmethod
def build_model(input_size: Tuple[int, int, int], filters: Tuple, kernels: Tuple):
pass
class UNet(Enum):
"""
Enum class defining different architecture types available
"""
DEFAULT = 0
DEFAULT_IMAGENET_EMBEDDING = 1
RESNET = 3
RESIDUAL_ATTENTION_UNET_SEPARABLE_CONV = 4
def build_model(self, input_size: Tuple[int, int, int], filters: Optional[Tuple] = None,
kernels: Optional[Tuple] = None) -> BaseUNet:
# set default filters
if filters is None:
filters = (16, 32, 64, 128, 256)
# set default kernels
if kernels is None:
kernels = list(3 for _ in range(len(filters)))
# check kernels and filters
if len(filters) != len(kernels):
raise Exception('Kernels and filter count has to match.')
if self == UNet.DEFAULT_IMAGENET_EMBEDDING:
print('Using default UNet model with imagenet embedding')
return UNetDefault.build_model(input_size, filters, kernels, use_embedding=True)
elif self == UNet.RESNET:
print('Using UNet Resnet model')
return UNet_resnet.build_model(input_size, filters, kernels)
elif self == UNet.RESIDUAL_ATTENTION_UNET_SEPARABLE_CONV:
print('Using UNet Resnet model with attention mechanism and separable convolutions')
return UNet_ResNet_Attention_SeparableConv.build_model(input_size, filters, kernels)
print('Using default UNet model')
return UNetDefault.build_model(input_size, filters, kernels, use_embedding=False)
class Attention(Layer):
def __init__(self, **kwargs):
super(Attention, self).__init__(**kwargs)
def build(self, input_shape):
# Create a trainable weight variable for this layer.
self.kernel = self.add_weight(name='kernel',
shape=(input_shape[-1], 1),
initializer='glorot_normal',
trainable=True)
self.bias = self.add_weight(name='bias',
shape=(1,),
initializer='zeros',
trainable=True)
super(Attention, self).build(input_shape) # Be sure to call this at the end
def call(self, x):
attention = tf.nn.softmax(tf.matmul(x, self.kernel) + self.bias, axis=-1)
return tf.multiply(x, attention)
def compute_output_shape(self, input_shape):
return input_shape
class UNet_ResNet_Attention_SeparableConv(BaseUNet):
"""
UNet architecture with resnet blocks, attention mechanism and separable convolutions
"""
@staticmethod
def build_model(input_size: Tuple[int, int, int], filters: Tuple, kernels: Tuple):
p0 = Input(shape=input_size)
conv_outputs = []
first_layer = SeparableConv2D(filters[0], kernels[0], padding='same')(p0)
int_layer = first_layer
for i, f in enumerate(filters):
int_layer, skip = UNet_ResNet_Attention_SeparableConv.down_block(int_layer, f, kernels[i])
conv_outputs.append(skip)
int_layer = UNet_ResNet_Attention_SeparableConv.bottleneck(int_layer, filters[-1], kernels[-1])
conv_outputs = list(reversed(conv_outputs))
reversed_filter = list(reversed(filters))
reversed_kernels = list(reversed(kernels))
for i, f in enumerate(reversed_filter):
if i + 1 < len(reversed_filter):
num_filters_next = reversed_filter[i + 1]
num_kernels_next = reversed_kernels[i + 1]
else:
num_filters_next = f
num_kernels_next = reversed_kernels[i]
int_layer = UNet_ResNet_Attention_SeparableConv.up_block(int_layer, conv_outputs[i], f, num_filters_next, num_kernels_next)
int_layer = Attention()(int_layer)
# concat. with the first layer
int_layer = Concatenate()([first_layer, int_layer])
int_layer = SeparableConv2D(filters[0], kernels[0], padding="same", activation="relu")(int_layer)
outputs = SeparableConv2D(3, (1, 1), padding="same", activation="sigmoid")(int_layer)
model = Model(p0, outputs)
return UNet_ResNet_Attention_SeparableConv(model)
@staticmethod
def down_block(x, num_filters: int = 64, kernel: int = 3):
# down-sample inputs
x = SeparableConv2D(num_filters, kernel, padding='same', strides=2, dilation_rate = 2)(x)
# inner block
out = SeparableConv2D(num_filters, kernel, padding='same')(x)
# out = BatchNormalization()(out)
out = Activation('relu')(out)
out = SeparableConv2D(num_filters, kernel, padding='same')(out)
# merge with the skip connection
out = Add()([out, x])
# out = BatchNormalization()(out)
return Activation('relu')(out), x
@staticmethod
def up_block(x, skip, num_filters: int = 64, num_filters_next: int = 64, kernel: int = 3):
# add U-Net skip connection - before up-sampling
concat = Concatenate()([x, skip])
# inner block
out = SeparableConv2D(num_filters, kernel, padding='same', dilation_rate = 2)(concat)
# out = BatchNormalization()(out)
out = Activation('relu')(out)
out = SeparableConv2D(num_filters, kernel, padding='same')(out)
# merge with the skip connection
out = Add()([out, x])
# out = BatchNormalization()(out)
out = Activation('relu')(out)
# up-sample
out = UpSampling2D((2, 2))(out)
out = SeparableConv2D(num_filters_next, kernel, padding='same')(out)
# out = BatchNormalization()(out)
return Activation('relu')(out)
@staticmethod
def bottleneck(x, num_filters: int = 64, kernel: int = 3):
# inner block
out = SeparableConv2D(num_filters, kernel, padding='same', dilation_rate = 2)(x)
# out = BatchNormalization()(out)
out = Activation('relu')(out)
out = SeparableConv2D(num_filters, kernel, padding='same')(out)
out = Add()([out, x])
# out = BatchNormalization()(out)
return Activation('relu')(out)
# Class for UNet with Resnet blocks
class UNet_resnet(BaseUNet):
"""
UNet architecture with resnet blocks
"""
@staticmethod
def build_model(input_size: Tuple[int, int, int], filters: Tuple, kernels: Tuple):
p0 = Input(shape=input_size)
conv_outputs = []
first_layer = Conv2D(filters[0], kernels[0], padding='same')(p0)
int_layer = first_layer
for i, f in enumerate(filters):
int_layer, skip = UNet_resnet.down_block(int_layer, f, kernels[i])
conv_outputs.append(skip)
int_layer = UNet_resnet.bottleneck(int_layer, filters[-1], kernels[-1])
conv_outputs = list(reversed(conv_outputs))
reversed_filter = list(reversed(filters))
reversed_kernels = list(reversed(kernels))
for i, f in enumerate(reversed_filter):
if i + 1 < len(reversed_filter):
num_filters_next = reversed_filter[i + 1]
num_kernels_next = reversed_kernels[i + 1]
else:
num_filters_next = f
num_kernels_next = reversed_kernels[i]
int_layer = UNet_resnet.up_block(int_layer, conv_outputs[i], f, num_filters_next, num_kernels_next)
# concat. with the first layer
int_layer = Concatenate()([first_layer, int_layer])
int_layer = Conv2D(filters[0], kernels[0], padding="same", activation="relu")(int_layer)
outputs = Conv2D(3, (1, 1), padding="same", activation="sigmoid")(int_layer)
model = Model(p0, outputs)
return UNet_resnet(model)
@staticmethod
def down_block(x, num_filters: int = 64, kernel: int = 3):
# down-sample inputs
x = Conv2D(num_filters, kernel, padding='same', strides=2)(x)
# inner block
out = Conv2D(num_filters, kernel, padding='same')(x)
# out = BatchNormalization()(out)
out = Activation('relu')(out)
out = Conv2D(num_filters, kernel, padding='same')(out)
# merge with the skip connection
out = Add()([out, x])
# out = BatchNormalization()(out)
return Activation('relu')(out), x
@staticmethod
def up_block(x, skip, num_filters: int = 64, num_filters_next: int = 64, kernel: int = 3):
# add U-Net skip connection - before up-sampling
concat = Concatenate()([x, skip])
# inner block
out = Conv2D(num_filters, kernel, padding='same')(concat)
# out = BatchNormalization()(out)
out = Activation('relu')(out)
out = Conv2D(num_filters, kernel, padding='same')(out)
# merge with the skip connection
out = Add()([out, x])
# out = BatchNormalization()(out)
out = Activation('relu')(out)
# add U-Net skip connection - before up-sampling
concat = Concatenate()([out, skip])
# up-sample
# out = UpSampling2D((2, 2))(concat)
out = Conv2DTranspose(num_filters_next, kernel, padding='same', strides=2)(concat)
out = Conv2D(num_filters_next, kernel, padding='same')(out)
# out = BatchNormalization()(out)
return Activation('relu')(out)
@staticmethod
def bottleneck(x, filters, kernel: int = 3):
x = Conv2D(filters, kernel, padding='same', name='bottleneck')(x)
# x = BatchNormalization()(x)
return Activation('relu')(x)
class UNetDefault(BaseUNet):
"""
UNet architecture from following github notebook for image segmentation:
https://github.com/nikhilroxtomar/UNet-Segmentation-in-Keras-TensorFlow/blob/master/unet-segmentation.ipynb
https://github.com/nikhilroxtomar/Polyp-Segmentation-using-UNET-in-TensorFlow-2.0
"""
@staticmethod
def build_model(input_size: Tuple[int, int, int], filters: Tuple, kernels: Tuple, use_embedding: bool = True):
p0 = Input(input_size)
if use_embedding:
mobilenet_model = tf.keras.applications.MobileNetV2(
input_shape=input_size, include_top=False, weights='imagenet'
)
mobilenet_model.trainable = False
mn1 = mobilenet_model(p0)
mn1 = Reshape((16, 16, 320))(mn1)
conv_outputs = []
int_layer = p0
for f in filters:
conv_output, int_layer = UNetDefault.down_block(int_layer, f)
conv_outputs.append(conv_output)
int_layer = UNetDefault.bottleneck(int_layer, filters[-1])
if use_embedding:
int_layer = Concatenate()([int_layer, mn1])
conv_outputs = list(reversed(conv_outputs))
for i, f in enumerate(reversed(filters)):
int_layer = UNetDefault.up_block(int_layer, conv_outputs[i], f)
int_layer = Conv2D(filters[0] // 2, 3, padding="same", activation="relu")(int_layer)
outputs = Conv2D(3, (1, 1), padding="same", activation="sigmoid")(int_layer)
model = Model(p0, outputs)
return UNetDefault(model)
@staticmethod
def down_block(x, filters, kernel_size=(3, 3), padding="same", strides=1):
c = Conv2D(filters, kernel_size, padding=padding, strides=strides, activation="relu")(x)
# c = BatchNormalization()(c)
p = MaxPool2D((2, 2), (2, 2))(c)
return c, p
@staticmethod
def up_block(x, skip, filters, kernel_size=(3, 3), padding="same", strides=1):
us = UpSampling2D((2, 2))(x)
c = Conv2D(filters, kernel_size, padding=padding, strides=strides, activation="relu")(us)
# c = BatchNormalization()(c)
concat = Concatenate()([c, skip])
c = Conv2D(filters, kernel_size, padding=padding, strides=strides, activation="relu")(concat)
# c = BatchNormalization()(c)
return c
@staticmethod
def bottleneck(x, filters, kernel_size=(3, 3), padding="same", strides=1):
c = Conv2D(filters, kernel_size, padding=padding, strides=strides, activation="relu")(x)
# c = BatchNormalization()(c)
return c
if __name__ == "__main__":
filters = (64, 128, 128, 256, 256, 512)
kernels = (7, 7, 7, 3, 3, 3)
input_image_size = (256, 256, 3)
# model = UNet_resnet()
# model = model.build_model(input_size=input_image_size,filters=filters,kernels=kernels)
# print(model.summary())
# __init__() missing 1 required positional argument: 'model'
model = UNetDefault.build_model(input_size=input_image_size, filters=filters, kernels=kernels)
print(model.summary())
|