Spaces:
Sleeping
Sleeping
File size: 11,246 Bytes
d66dc94 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 |
import torch
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
import numpy as np
def subsequent_mask(size):
attn_shape = (1, size, size)
subsequent_mask = np.triu(np.ones(attn_shape),
k=1).astype('uint8')
output = torch.from_numpy(subsequent_mask) == 0
return output
def make_std_mask(tgt, pad):
tgt_mask=(tgt != pad).unsqueeze(-2)
output=tgt_mask & subsequent_mask(tgt.size(-1)).type_as(tgt_mask.data)
return output
# define the Batch class
class Batch:
def __init__(self, src, trg=None, pad=0):
src = torch.from_numpy(src).to(DEVICE).long()
self.src = src
self.src_mask = (src != pad).unsqueeze(-2)
if trg is not None:
trg = torch.from_numpy(trg).to(DEVICE).long()
self.trg = trg[:, :-1]
self.trg_y = trg[:, 1:]
self.trg_mask = make_std_mask(self.trg, pad)
self.ntokens = (self.trg_y != pad).data.sum()
from torch import nn
# An encoder-decoder transformer
class Transformer(nn.Module):
def __init__(self, encoder, decoder,
src_embed, tgt_embed, generator):
super().__init__()
self.encoder = encoder
self.decoder = decoder
self.src_embed = src_embed
self.tgt_embed = tgt_embed
self.generator = generator
def encode(self, src, src_mask):
return self.encoder(self.src_embed(src), src_mask)
def decode(self, memory, src_mask, tgt, tgt_mask):
return self.decoder(self.tgt_embed(tgt),
memory, src_mask, tgt_mask)
def forward(self, src, tgt, src_mask, tgt_mask):
memory = self.encode(src, src_mask)
output = self.decode(memory, src_mask, tgt, tgt_mask)
return output
# Create an encoder
from copy import deepcopy
class Encoder(nn.Module):
def __init__(self, layer, N):
super().__init__()
self.layers = nn.ModuleList(
[deepcopy(layer) for i in range(N)])
self.norm = LayerNorm(layer.size)
def forward(self, x, mask):
for layer in self.layers:
x = layer(x, mask)
output = self.norm(x)
return output
class EncoderLayer(nn.Module):
def __init__(self, size, self_attn, feed_forward, dropout):
super().__init__()
self.self_attn = self_attn
self.feed_forward = feed_forward
self.sublayer = nn.ModuleList([deepcopy(
SublayerConnection(size, dropout)) for i in range(2)])
self.size = size
def forward(self, x, mask):
x = self.sublayer[0](
x, lambda x: self.self_attn(x, x, x, mask))
output = self.sublayer[1](x, self.feed_forward)
return output
class SublayerConnection(nn.Module):
def __init__(self, size, dropout):
super().__init__()
self.norm = LayerNorm(size)
self.dropout = nn.Dropout(dropout)
def forward(self, x, sublayer):
output = x + self.dropout(sublayer(self.norm(x)))
return output
class LayerNorm(nn.Module):
def __init__(self, features, eps=1e-6):
super().__init__()
self.a_2 = nn.Parameter(torch.ones(features))
self.b_2 = nn.Parameter(torch.zeros(features))
self.eps = eps
def forward(self, x):
mean = x.mean(-1, keepdim=True)
std = x.std(-1, keepdim=True)
x_zscore = (x - mean) / torch.sqrt(std ** 2 + self.eps)
output = self.a_2*x_zscore+self.b_2
return output
# Create a decoder
class Decoder(nn.Module):
def __init__(self, layer, N):
super().__init__()
self.layers = nn.ModuleList(
[deepcopy(layer) for i in range(N)])
self.norm = LayerNorm(layer.size)
def forward(self, x, memory, src_mask, tgt_mask):
for layer in self.layers:
x = layer(x, memory, src_mask, tgt_mask)
output = self.norm(x)
return output
class DecoderLayer(nn.Module):
def __init__(self, size, self_attn, src_attn,
feed_forward, dropout):
super().__init__()
self.size = size
self.self_attn = self_attn
self.src_attn = src_attn
self.feed_forward = feed_forward
self.sublayer = nn.ModuleList([deepcopy(
SublayerConnection(size, dropout)) for i in range(3)])
def forward(self, x, memory, src_mask, tgt_mask):
x = self.sublayer[0](x, lambda x:
self.self_attn(x, x, x, tgt_mask))
x = self.sublayer[1](x, lambda x:
self.src_attn(x, memory, memory, src_mask))
output = self.sublayer[2](x, self.feed_forward)
return output
# create the model
def create_model(src_vocab, tgt_vocab, N, d_model,
d_ff, h, dropout=0.1):
attn=MultiHeadedAttention(h, d_model).to(DEVICE)
ff=PositionwiseFeedForward(d_model, d_ff, dropout).to(DEVICE)
pos=PositionalEncoding(d_model, dropout).to(DEVICE)
model = Transformer(
Encoder(EncoderLayer(d_model,deepcopy(attn),deepcopy(ff),
dropout).to(DEVICE),N).to(DEVICE),
Decoder(DecoderLayer(d_model,deepcopy(attn),
deepcopy(attn),deepcopy(ff), dropout).to(DEVICE),
N).to(DEVICE),
nn.Sequential(Embeddings(d_model, src_vocab).to(DEVICE),
deepcopy(pos)),
nn.Sequential(Embeddings(d_model, tgt_vocab).to(DEVICE),
deepcopy(pos)),
Generator(d_model, tgt_vocab)).to(DEVICE)
for p in model.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
return model.to(DEVICE)
import math
class Embeddings(nn.Module):
def __init__(self, d_model, vocab):
super().__init__()
self.lut = nn.Embedding(vocab, d_model)
self.d_model = d_model
def forward(self, x):
out = self.lut(x) * math.sqrt(self.d_model)
return out
class PositionalEncoding(nn.Module):
def __init__(self, d_model, dropout, max_len=5000):
super().__init__()
self.dropout = nn.Dropout(p=dropout)
pe = torch.zeros(max_len, d_model, device=DEVICE)
position = torch.arange(0., max_len,
device=DEVICE).unsqueeze(1)
div_term = torch.exp(torch.arange(
0., d_model, 2, device=DEVICE)
* -(math.log(10000.0) / d_model))
pe_pos = torch.mul(position, div_term)
pe[:, 0::2] = torch.sin(pe_pos)
pe[:, 1::2] = torch.cos(pe_pos)
pe = pe.unsqueeze(0)
self.register_buffer('pe', pe)
def forward(self, x):
x = x + self.pe[:, :x.size(1)].requires_grad_(False)
out = self.dropout(x)
return out
def attention(query, key, value, mask=None, dropout=None):
d_k = query.size(-1)
scores = torch.matmul(query,
key.transpose(-2, -1)) / math.sqrt(d_k)
if mask is not None:
scores = scores.masked_fill(mask == 0, -1e9)
p_attn = nn.functional.softmax(scores, dim=-1)
if dropout is not None:
p_attn = dropout(p_attn)
return torch.matmul(p_attn, value), p_attn
class MultiHeadedAttention(nn.Module):
def __init__(self, h, d_model, dropout=0.1):
super().__init__()
assert d_model % h == 0
self.d_k = d_model // h
self.h = h
self.linears = nn.ModuleList([deepcopy(
nn.Linear(d_model, d_model)) for i in range(4)])
self.attn = None
self.dropout = nn.Dropout(p=dropout)
def forward(self, query, key, value, mask=None):
if mask is not None:
mask = mask.unsqueeze(1)
nbatches = query.size(0)
query, key, value = [l(x).view(nbatches, -1, self.h,
self.d_k).transpose(1, 2)
for l, x in zip(self.linears, (query, key, value))]
x, self.attn = attention(
query, key, value, mask=mask, dropout=self.dropout)
x = x.transpose(1, 2).contiguous().view(
nbatches, -1, self.h * self.d_k)
output = self.linears[-1](x)
return output
class Generator(nn.Module):
def __init__(self, d_model, vocab):
super().__init__()
self.proj = nn.Linear(d_model, vocab)
def forward(self, x):
out = self.proj(x)
probs = nn.functional.log_softmax(out, dim=-1)
return probs
class PositionwiseFeedForward(nn.Module):
def __init__(self, d_model, d_ff, dropout=0.1):
super().__init__()
self.w_1 = nn.Linear(d_model, d_ff)
self.w_2 = nn.Linear(d_ff, d_model)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
h1 = self.w_1(x)
h2 = self.dropout(h1)
return self.w_2(h2)
class LabelSmoothing(nn.Module):
def __init__(self, size, padding_idx, smoothing=0.1):
super().__init__()
self.criterion = nn.KLDivLoss(reduction='sum')
self.padding_idx = padding_idx
self.confidence = 1.0 - smoothing
self.smoothing = smoothing
self.size = size
self.true_dist = None
def forward(self, x, target):
assert x.size(1) == self.size
true_dist = x.data.clone()
true_dist.fill_(self.smoothing / (self.size - 2))
true_dist.scatter_(1,
target.data.unsqueeze(1), self.confidence)
true_dist[:, self.padding_idx] = 0
mask = torch.nonzero(target.data == self.padding_idx)
if mask.dim() > 0:
true_dist.index_fill_(0, mask.squeeze(), 0.0)
self.true_dist = true_dist
output = self.criterion(x, true_dist.clone().detach())
return output
class SimpleLossCompute:
def __init__(self, generator, criterion, opt=None):
self.generator = generator
self.criterion = criterion
self.opt = opt
def __call__(self, x, y, norm):
x = self.generator(x)
loss = self.criterion(x.contiguous().view(-1, x.size(-1)),
y.contiguous().view(-1)) / norm
loss.backward()
if self.opt is not None:
self.opt.step()
self.opt.optimizer.zero_grad()
return loss.data.item() * norm.float()
class NoamOpt:
def __init__(self, model_size, factor, warmup, optimizer):
self.optimizer = optimizer
self._step = 0
self.warmup = warmup
self.factor = factor
self.model_size = model_size
self._rate = 0
def step(self):
self._step += 1
rate = self.rate()
for p in self.optimizer.param_groups:
p['lr'] = rate
self._rate = rate
self.optimizer.step()
def rate(self, step=None):
if step is None:
step = self._step
output = self.factor * (self.model_size ** (-0.5) *
min(step ** (-0.5), step * self.warmup ** (-1.5)))
return output
|