File size: 11,246 Bytes
d66dc94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340

import torch
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"

import numpy as np
def subsequent_mask(size):
    attn_shape = (1, size, size)
    subsequent_mask = np.triu(np.ones(attn_shape),
                              k=1).astype('uint8')
    output = torch.from_numpy(subsequent_mask) == 0
    return output


def make_std_mask(tgt, pad):
    tgt_mask=(tgt != pad).unsqueeze(-2)
    output=tgt_mask & subsequent_mask(tgt.size(-1)).type_as(tgt_mask.data)
    return output 

# define the Batch class
class Batch:
    def __init__(self, src, trg=None, pad=0):
        src = torch.from_numpy(src).to(DEVICE).long()
        self.src = src
        self.src_mask = (src != pad).unsqueeze(-2)
        if trg is not None:
            trg = torch.from_numpy(trg).to(DEVICE).long()
            self.trg = trg[:, :-1]
            self.trg_y = trg[:, 1:]
            self.trg_mask = make_std_mask(self.trg, pad)
            self.ntokens = (self.trg_y != pad).data.sum()

from torch import nn
# An encoder-decoder transformer
class Transformer(nn.Module):
    def __init__(self, encoder, decoder,

                 src_embed, tgt_embed, generator):
        super().__init__()
        self.encoder = encoder
        self.decoder = decoder
        self.src_embed = src_embed
        self.tgt_embed = tgt_embed
        self.generator = generator

    def encode(self, src, src_mask):
        return self.encoder(self.src_embed(src), src_mask)

    def decode(self, memory, src_mask, tgt, tgt_mask):
        return self.decoder(self.tgt_embed(tgt), 
                            memory, src_mask, tgt_mask)

    def forward(self, src, tgt, src_mask, tgt_mask):
        memory = self.encode(src, src_mask)
        output = self.decode(memory, src_mask, tgt, tgt_mask)
        return output

# Create an encoder
from copy import deepcopy
class Encoder(nn.Module):
    def __init__(self, layer, N):
        super().__init__()
        self.layers = nn.ModuleList(
            [deepcopy(layer) for i in range(N)])
        self.norm = LayerNorm(layer.size)

    def forward(self, x, mask):
        for layer in self.layers:
            x = layer(x, mask)
            output = self.norm(x)
        return output

class EncoderLayer(nn.Module):
    def __init__(self, size, self_attn, feed_forward, dropout):
        super().__init__()
        self.self_attn = self_attn
        self.feed_forward = feed_forward
        self.sublayer = nn.ModuleList([deepcopy(
        SublayerConnection(size, dropout)) for i in range(2)])
        self.size = size  

    def forward(self, x, mask):
        x = self.sublayer[0](
            x, lambda x: self.self_attn(x, x, x, mask))
        output = self.sublayer[1](x, self.feed_forward)
        return output 
    
class SublayerConnection(nn.Module):
    def __init__(self, size, dropout):
        super().__init__()
        self.norm = LayerNorm(size)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x, sublayer):
        output = x + self.dropout(sublayer(self.norm(x)))
        return output  

class LayerNorm(nn.Module):
    def __init__(self, features, eps=1e-6):
        super().__init__()
        self.a_2 = nn.Parameter(torch.ones(features))
        self.b_2 = nn.Parameter(torch.zeros(features))
        self.eps = eps

    def forward(self, x):
        mean = x.mean(-1, keepdim=True) 
        std = x.std(-1, keepdim=True)
        x_zscore = (x - mean) / torch.sqrt(std ** 2 + self.eps)
        output = self.a_2*x_zscore+self.b_2
        return output

# Create a decoder
class Decoder(nn.Module):
    def __init__(self, layer, N):
        super().__init__()
        self.layers = nn.ModuleList(
            [deepcopy(layer) for i in range(N)])
        self.norm = LayerNorm(layer.size)

    def forward(self, x, memory, src_mask, tgt_mask):
        for layer in self.layers:
            x = layer(x, memory, src_mask, tgt_mask)
        output = self.norm(x)
        return output

class DecoderLayer(nn.Module):
    def __init__(self, size, self_attn, src_attn,

                 feed_forward, dropout):
        super().__init__()
        self.size = size
        self.self_attn = self_attn
        self.src_attn = src_attn
        self.feed_forward = feed_forward
        self.sublayer = nn.ModuleList([deepcopy(
        SublayerConnection(size, dropout)) for i in range(3)])

    def forward(self, x, memory, src_mask, tgt_mask):
        x = self.sublayer[0](x, lambda x: 
                 self.self_attn(x, x, x, tgt_mask))
        x = self.sublayer[1](x, lambda x:
                 self.src_attn(x, memory, memory, src_mask))
        output = self.sublayer[2](x, self.feed_forward)
        return output 



# create the model
def create_model(src_vocab, tgt_vocab, N, d_model,

                 d_ff, h, dropout=0.1):
    attn=MultiHeadedAttention(h, d_model).to(DEVICE)
    ff=PositionwiseFeedForward(d_model, d_ff, dropout).to(DEVICE)
    pos=PositionalEncoding(d_model, dropout).to(DEVICE)
    model = Transformer(
        Encoder(EncoderLayer(d_model,deepcopy(attn),deepcopy(ff),
                             dropout).to(DEVICE),N).to(DEVICE),
        Decoder(DecoderLayer(d_model,deepcopy(attn),
             deepcopy(attn),deepcopy(ff), dropout).to(DEVICE),
                N).to(DEVICE),
        nn.Sequential(Embeddings(d_model, src_vocab).to(DEVICE),
                      deepcopy(pos)),
        nn.Sequential(Embeddings(d_model, tgt_vocab).to(DEVICE),
                      deepcopy(pos)),
        Generator(d_model, tgt_vocab)).to(DEVICE)
    for p in model.parameters():
        if p.dim() > 1:
            nn.init.xavier_uniform_(p)
    return model.to(DEVICE)

import math
class Embeddings(nn.Module):
    def __init__(self, d_model, vocab):
        super().__init__()
        self.lut = nn.Embedding(vocab, d_model)
        self.d_model = d_model

    def forward(self, x):
        out = self.lut(x) * math.sqrt(self.d_model)
        return out



class PositionalEncoding(nn.Module):
    def __init__(self, d_model, dropout, max_len=5000):
        super().__init__()
        self.dropout = nn.Dropout(p=dropout)
        pe = torch.zeros(max_len, d_model, device=DEVICE)
        position = torch.arange(0., max_len, 
                                device=DEVICE).unsqueeze(1)
        div_term = torch.exp(torch.arange(
            0., d_model, 2, device=DEVICE)
            * -(math.log(10000.0) / d_model))
        pe_pos = torch.mul(position, div_term)
        pe[:, 0::2] = torch.sin(pe_pos)
        pe[:, 1::2] = torch.cos(pe_pos)
        pe = pe.unsqueeze(0)
        self.register_buffer('pe', pe)  

    def forward(self, x):
        x = x + self.pe[:, :x.size(1)].requires_grad_(False)
        out = self.dropout(x)
        return out

def attention(query, key, value, mask=None, dropout=None):
    d_k = query.size(-1)
    scores = torch.matmul(query, 
              key.transpose(-2, -1)) / math.sqrt(d_k)
    if mask is not None:
        scores = scores.masked_fill(mask == 0, -1e9)
    p_attn = nn.functional.softmax(scores, dim=-1)
    if dropout is not None:
        p_attn = dropout(p_attn)
    return torch.matmul(p_attn, value), p_attn

class MultiHeadedAttention(nn.Module):
    def __init__(self, h, d_model, dropout=0.1):
        super().__init__()
        assert d_model % h == 0
        self.d_k = d_model // h
        self.h = h
        self.linears = nn.ModuleList([deepcopy(
            nn.Linear(d_model, d_model)) for i in range(4)])
        self.attn = None
        self.dropout = nn.Dropout(p=dropout)

    def forward(self, query, key, value, mask=None):
        if mask is not None:
            mask = mask.unsqueeze(1)
        nbatches = query.size(0)  
        query, key, value = [l(x).view(nbatches, -1, self.h,
           self.d_k).transpose(1, 2)
         for l, x in zip(self.linears, (query, key, value))]
        x, self.attn = attention(
            query, key, value, mask=mask, dropout=self.dropout)
        x = x.transpose(1, 2).contiguous().view(
            nbatches, -1, self.h * self.d_k)
        output = self.linears[-1](x)
        return output 
    
class Generator(nn.Module):
    def __init__(self, d_model, vocab):
        super().__init__()
        self.proj = nn.Linear(d_model, vocab)

    def forward(self, x):
        out = self.proj(x)
        probs = nn.functional.log_softmax(out, dim=-1)
        return probs   
    
    
class PositionwiseFeedForward(nn.Module):
    def __init__(self, d_model, d_ff, dropout=0.1):
        super().__init__()
        self.w_1 = nn.Linear(d_model, d_ff)
        self.w_2 = nn.Linear(d_ff, d_model)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        h1 = self.w_1(x)
        h2 = self.dropout(h1)
        return self.w_2(h2)   
    
    


class LabelSmoothing(nn.Module):
    def __init__(self, size, padding_idx, smoothing=0.1):
        super().__init__()
        self.criterion = nn.KLDivLoss(reduction='sum')  
        self.padding_idx = padding_idx
        self.confidence = 1.0 - smoothing
        self.smoothing = smoothing
        self.size = size
        self.true_dist = None

    def forward(self, x, target):
        assert x.size(1) == self.size
        true_dist = x.data.clone()
        true_dist.fill_(self.smoothing / (self.size - 2))
        true_dist.scatter_(1, 
               target.data.unsqueeze(1), self.confidence)
        true_dist[:, self.padding_idx] = 0
        mask = torch.nonzero(target.data == self.padding_idx)
        if mask.dim() > 0:
            true_dist.index_fill_(0, mask.squeeze(), 0.0)
        self.true_dist = true_dist
        output = self.criterion(x, true_dist.clone().detach())
        return output

class SimpleLossCompute:
    def __init__(self, generator, criterion, opt=None):
        self.generator = generator
        self.criterion = criterion
        self.opt = opt

    def __call__(self, x, y, norm):
        x = self.generator(x)
        loss = self.criterion(x.contiguous().view(-1, x.size(-1)),
                              y.contiguous().view(-1)) / norm
        loss.backward()
        if self.opt is not None:
            self.opt.step()
            self.opt.optimizer.zero_grad()
        return loss.data.item() * norm.float()

class NoamOpt:
    def __init__(self, model_size, factor, warmup, optimizer):
        self.optimizer = optimizer
        self._step = 0
        self.warmup = warmup
        self.factor = factor
        self.model_size = model_size
        self._rate = 0

    def step(self):
        self._step += 1
        rate = self.rate()
        for p in self.optimizer.param_groups:
            p['lr'] = rate
        self._rate = rate
        self.optimizer.step()

    def rate(self, step=None):
        if step is None:
            step = self._step
        output = self.factor * (self.model_size ** (-0.5) *
        min(step ** (-0.5), step * self.warmup ** (-1.5)))
        return output