Update app.py
Browse files
app.py
CHANGED
@@ -36,11 +36,24 @@ with st.sidebar:
|
|
36 |
if "messages" not in st.session_state:
|
37 |
st.session_state.messages = []
|
38 |
|
|
|
39 |
@st.cache_data
|
40 |
def process_file(uploaded_file):
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
|
|
44 |
@st.cache_resource
|
45 |
def load_model(hf_token):
|
46 |
try:
|
@@ -48,16 +61,13 @@ def load_model(hf_token):
|
|
48 |
st.error("π Authentication required! Please provide a Hugging Face token.")
|
49 |
return None
|
50 |
|
51 |
-
# Login to Hugging Face Hub
|
52 |
login(token=hf_token)
|
53 |
|
54 |
-
# Load tokenizer
|
55 |
tokenizer = AutoTokenizer.from_pretrained(
|
56 |
MODEL_NAME,
|
57 |
token=hf_token
|
58 |
)
|
59 |
|
60 |
-
# Load model with KV caching support
|
61 |
model = AutoModelForCausalLM.from_pretrained(
|
62 |
MODEL_NAME,
|
63 |
device_map="auto",
|
@@ -71,7 +81,43 @@ def load_model(hf_token):
|
|
71 |
st.error(f"π€ Model loading failed: {str(e)}")
|
72 |
return None
|
73 |
|
74 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
if prompt := st.chat_input("Ask your inspection question..."):
|
76 |
if not hf_token:
|
77 |
st.error("π Authentication required!")
|
@@ -89,7 +135,6 @@ if prompt := st.chat_input("Ask your inspection question..."):
|
|
89 |
model = st.session_state.model
|
90 |
tokenizer = st.session_state.tokenizer
|
91 |
|
92 |
-
|
93 |
# Add user message
|
94 |
with st.chat_message("user", avatar="π€"):
|
95 |
st.markdown(prompt)
|
|
|
36 |
if "messages" not in st.session_state:
|
37 |
st.session_state.messages = []
|
38 |
|
39 |
+
# File processing function
|
40 |
@st.cache_data
|
41 |
def process_file(uploaded_file):
|
42 |
+
if uploaded_file is None:
|
43 |
+
return ""
|
44 |
+
|
45 |
+
try:
|
46 |
+
if uploaded_file.type == "application/pdf":
|
47 |
+
pdf_reader = PyPDF2.PdfReader(uploaded_file)
|
48 |
+
return "\n".join([page.extract_text() for page in pdf_reader.pages])
|
49 |
+
elif uploaded_file.type == "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet":
|
50 |
+
df = pd.read_excel(uploaded_file)
|
51 |
+
return df.to_markdown()
|
52 |
+
except Exception as e:
|
53 |
+
st.error(f"π Error processing file: {str(e)}")
|
54 |
+
return ""
|
55 |
|
56 |
+
# Model loading function
|
57 |
@st.cache_resource
|
58 |
def load_model(hf_token):
|
59 |
try:
|
|
|
61 |
st.error("π Authentication required! Please provide a Hugging Face token.")
|
62 |
return None
|
63 |
|
|
|
64 |
login(token=hf_token)
|
65 |
|
|
|
66 |
tokenizer = AutoTokenizer.from_pretrained(
|
67 |
MODEL_NAME,
|
68 |
token=hf_token
|
69 |
)
|
70 |
|
|
|
71 |
model = AutoModelForCausalLM.from_pretrained(
|
72 |
MODEL_NAME,
|
73 |
device_map="auto",
|
|
|
81 |
st.error(f"π€ Model loading failed: {str(e)}")
|
82 |
return None
|
83 |
|
84 |
+
# Generation function with KV caching
|
85 |
+
def generate_with_kv_cache(prompt, file_context, use_cache=True):
|
86 |
+
full_prompt = f"Analyze this context:\n{file_context}\n\nQuestion: {prompt}\nAnswer:"
|
87 |
+
|
88 |
+
streamer = TextIteratorStreamer(
|
89 |
+
tokenizer,
|
90 |
+
skip_prompt=True,
|
91 |
+
skip_special_tokens=True
|
92 |
+
)
|
93 |
+
|
94 |
+
inputs = tokenizer(full_prompt, return_tensors="pt").to(model.device)
|
95 |
+
|
96 |
+
generation_kwargs = {
|
97 |
+
**inputs,
|
98 |
+
"max_new_tokens": 1024,
|
99 |
+
"temperature": 0.7,
|
100 |
+
"top_p": 0.9,
|
101 |
+
"repetition_penalty": 1.1,
|
102 |
+
"do_sample": True,
|
103 |
+
"use_cache": use_cache,
|
104 |
+
"streamer": streamer
|
105 |
+
}
|
106 |
+
|
107 |
+
Thread(target=model.generate, kwargs=generation_kwargs).start()
|
108 |
+
return streamer
|
109 |
+
|
110 |
+
# Display chat messages
|
111 |
+
for message in st.session_state.messages:
|
112 |
+
try:
|
113 |
+
avatar = "π€" if message["role"] == "user" else "π€"
|
114 |
+
with st.chat_message(message["role"], avatar=avatar):
|
115 |
+
st.markdown(message["content"])
|
116 |
+
except:
|
117 |
+
with st.chat_message(message["role"]):
|
118 |
+
st.markdown(message["content"])
|
119 |
+
|
120 |
+
# Chat input handling
|
121 |
if prompt := st.chat_input("Ask your inspection question..."):
|
122 |
if not hf_token:
|
123 |
st.error("π Authentication required!")
|
|
|
135 |
model = st.session_state.model
|
136 |
tokenizer = st.session_state.tokenizer
|
137 |
|
|
|
138 |
# Add user message
|
139 |
with st.chat_message("user", avatar="π€"):
|
140 |
st.markdown(prompt)
|