Update app.py
Browse files
app.py
CHANGED
@@ -25,9 +25,6 @@ with st.sidebar:
|
|
25 |
hf_token = st.text_input("Hugging Face Token", type="password",
|
26 |
help="Get your token from https://huggingface.co/settings/tokens")
|
27 |
|
28 |
-
if not hf_token:
|
29 |
-
st.warning("π Token required for private model access!", icon="β οΈ")
|
30 |
-
|
31 |
st.header("Upload Documents π")
|
32 |
uploaded_file = st.file_uploader(
|
33 |
"Choose a PDF or XLSX file",
|
@@ -42,27 +39,28 @@ if "messages" not in st.session_state:
|
|
42 |
# Process uploaded files
|
43 |
@st.cache_data
|
44 |
def process_file(uploaded_file):
|
45 |
-
|
|
|
|
|
46 |
try:
|
47 |
if uploaded_file.type == "application/pdf":
|
48 |
pdf_reader = PyPDF2.PdfReader(uploaded_file)
|
49 |
-
|
50 |
elif uploaded_file.type == "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet":
|
51 |
df = pd.read_excel(uploaded_file)
|
52 |
-
|
53 |
except Exception as e:
|
54 |
st.error(f"π Error processing file: {str(e)}")
|
55 |
-
|
56 |
|
57 |
# Load model and tokenizer with authentication
|
58 |
@st.cache_resource
|
59 |
def load_model(hf_token):
|
60 |
try:
|
61 |
-
# Login to Hugging Face Hub
|
62 |
if hf_token:
|
63 |
login(token=hf_token)
|
64 |
else:
|
65 |
-
st.error("π Authentication required!
|
66 |
return None, None
|
67 |
|
68 |
tokenizer = AutoTokenizer.from_pretrained(
|
@@ -82,17 +80,18 @@ def load_model(hf_token):
|
|
82 |
|
83 |
# Generate responses with streaming
|
84 |
def generate_response(prompt, file_context):
|
85 |
-
|
86 |
-
full_prompt = f"""You are an expert inspection engineer. Analyze this context:
|
87 |
{file_context}
|
88 |
|
89 |
Question: {prompt}
|
90 |
Answer:"""
|
91 |
|
92 |
-
|
93 |
-
|
|
|
|
|
|
|
94 |
|
95 |
-
# Tokenize input
|
96 |
inputs = tokenizer(
|
97 |
full_prompt,
|
98 |
return_tensors="pt",
|
@@ -100,7 +99,6 @@ def generate_response(prompt, file_context):
|
|
100 |
truncation=True
|
101 |
).to(model.device)
|
102 |
|
103 |
-
# Start generation thread
|
104 |
generation_kwargs = dict(
|
105 |
inputs,
|
106 |
streamer=streamer,
|
@@ -109,63 +107,63 @@ def generate_response(prompt, file_context):
|
|
109 |
top_p=0.9,
|
110 |
repetition_penalty=1.1,
|
111 |
do_sample=True,
|
112 |
-
use_cache=True
|
113 |
)
|
114 |
-
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
115 |
-
thread.start()
|
116 |
|
|
|
117 |
return streamer
|
118 |
|
119 |
-
# Display chat messages
|
120 |
for message in st.session_state.messages:
|
121 |
try:
|
122 |
-
# Set appropriate avatar based on role
|
123 |
avatar = "π€" if message["role"] == "user" else "π€"
|
124 |
-
|
125 |
with st.chat_message(message["role"], avatar=avatar):
|
126 |
st.markdown(message["content"])
|
127 |
-
except
|
128 |
-
st.error(f"Error displaying message: {str(e)}")
|
129 |
-
# Fallback to default avatar
|
130 |
with st.chat_message(message["role"]):
|
131 |
st.markdown(message["content"])
|
132 |
|
133 |
-
# Chat input
|
134 |
if prompt := st.chat_input("Ask your inspection question..."):
|
135 |
if not hf_token:
|
136 |
-
st.error("π Authentication required!
|
137 |
st.stop()
|
138 |
-
|
139 |
# Load model if not loaded
|
140 |
if "model" not in st.session_state:
|
141 |
st.session_state.model, st.session_state.tokenizer = load_model(hf_token)
|
142 |
model = st.session_state.model
|
143 |
tokenizer = st.session_state.tokenizer
|
144 |
|
145 |
-
# Add user message
|
146 |
-
|
147 |
-
|
148 |
-
st.markdown(prompt)
|
149 |
-
except:
|
150 |
-
# Fallback if avatar fails
|
151 |
-
with st.chat_message("user"):
|
152 |
-
st.markdown(prompt)
|
153 |
-
|
154 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
155 |
|
156 |
# Process file
|
157 |
-
file_context = process_file(uploaded_file)
|
158 |
|
159 |
-
# Generate
|
160 |
if model and tokenizer:
|
161 |
try:
|
162 |
with st.chat_message("assistant", avatar="π€"):
|
163 |
streamer = generate_response(prompt, file_context)
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
except Exception as e:
|
169 |
st.error(f"β‘ Generation error: {str(e)}")
|
170 |
else:
|
171 |
-
st.error("π€ Model not loaded
|
|
|
25 |
hf_token = st.text_input("Hugging Face Token", type="password",
|
26 |
help="Get your token from https://huggingface.co/settings/tokens")
|
27 |
|
|
|
|
|
|
|
28 |
st.header("Upload Documents π")
|
29 |
uploaded_file = st.file_uploader(
|
30 |
"Choose a PDF or XLSX file",
|
|
|
39 |
# Process uploaded files
|
40 |
@st.cache_data
|
41 |
def process_file(uploaded_file):
|
42 |
+
if uploaded_file is None:
|
43 |
+
return ""
|
44 |
+
|
45 |
try:
|
46 |
if uploaded_file.type == "application/pdf":
|
47 |
pdf_reader = PyPDF2.PdfReader(uploaded_file)
|
48 |
+
return "\n".join([page.extract_text() for page in pdf_reader.pages])
|
49 |
elif uploaded_file.type == "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet":
|
50 |
df = pd.read_excel(uploaded_file)
|
51 |
+
return df.to_markdown()
|
52 |
except Exception as e:
|
53 |
st.error(f"π Error processing file: {str(e)}")
|
54 |
+
return ""
|
55 |
|
56 |
# Load model and tokenizer with authentication
|
57 |
@st.cache_resource
|
58 |
def load_model(hf_token):
|
59 |
try:
|
|
|
60 |
if hf_token:
|
61 |
login(token=hf_token)
|
62 |
else:
|
63 |
+
st.error("π Authentication required!")
|
64 |
return None, None
|
65 |
|
66 |
tokenizer = AutoTokenizer.from_pretrained(
|
|
|
80 |
|
81 |
# Generate responses with streaming
|
82 |
def generate_response(prompt, file_context):
|
83 |
+
full_prompt = f"""Analyze this context:
|
|
|
84 |
{file_context}
|
85 |
|
86 |
Question: {prompt}
|
87 |
Answer:"""
|
88 |
|
89 |
+
streamer = TextIteratorStreamer(
|
90 |
+
tokenizer,
|
91 |
+
skip_prompt=True,
|
92 |
+
skip_special_tokens=True
|
93 |
+
)
|
94 |
|
|
|
95 |
inputs = tokenizer(
|
96 |
full_prompt,
|
97 |
return_tensors="pt",
|
|
|
99 |
truncation=True
|
100 |
).to(model.device)
|
101 |
|
|
|
102 |
generation_kwargs = dict(
|
103 |
inputs,
|
104 |
streamer=streamer,
|
|
|
107 |
top_p=0.9,
|
108 |
repetition_penalty=1.1,
|
109 |
do_sample=True,
|
110 |
+
use_cache=True
|
111 |
)
|
|
|
|
|
112 |
|
113 |
+
Thread(target=model.generate, kwargs=generation_kwargs).start()
|
114 |
return streamer
|
115 |
|
116 |
+
# Display chat messages
|
117 |
for message in st.session_state.messages:
|
118 |
try:
|
|
|
119 |
avatar = "π€" if message["role"] == "user" else "π€"
|
|
|
120 |
with st.chat_message(message["role"], avatar=avatar):
|
121 |
st.markdown(message["content"])
|
122 |
+
except:
|
|
|
|
|
123 |
with st.chat_message(message["role"]):
|
124 |
st.markdown(message["content"])
|
125 |
|
126 |
+
# Chat input handling
|
127 |
if prompt := st.chat_input("Ask your inspection question..."):
|
128 |
if not hf_token:
|
129 |
+
st.error("π Authentication required!")
|
130 |
st.stop()
|
131 |
+
|
132 |
# Load model if not loaded
|
133 |
if "model" not in st.session_state:
|
134 |
st.session_state.model, st.session_state.tokenizer = load_model(hf_token)
|
135 |
model = st.session_state.model
|
136 |
tokenizer = st.session_state.tokenizer
|
137 |
|
138 |
+
# Add user message
|
139 |
+
with st.chat_message("user", avatar="π€"):
|
140 |
+
st.markdown(prompt)
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
142 |
|
143 |
# Process file
|
144 |
+
file_context = process_file(uploaded_file)
|
145 |
|
146 |
+
# Generate response
|
147 |
if model and tokenizer:
|
148 |
try:
|
149 |
with st.chat_message("assistant", avatar="π€"):
|
150 |
streamer = generate_response(prompt, file_context)
|
151 |
+
response_container = st.empty()
|
152 |
+
full_response = ""
|
153 |
+
|
154 |
+
for chunk in streamer:
|
155 |
+
# Remove <think> tags and clean text
|
156 |
+
cleaned_chunk = chunk.replace("<think>", "").replace("</think>", "").strip()
|
157 |
+
full_response += cleaned_chunk + " "
|
158 |
+
|
159 |
+
# Update display with typing cursor
|
160 |
+
response_container.markdown(full_response + "β", unsafe_allow_html=True)
|
161 |
+
|
162 |
+
# Display final response
|
163 |
+
response_container.markdown(full_response)
|
164 |
+
st.session_state.messages.append({"role": "assistant", "content": full_response})
|
165 |
+
|
166 |
except Exception as e:
|
167 |
st.error(f"β‘ Generation error: {str(e)}")
|
168 |
else:
|
169 |
+
st.error("π€ Model not loaded!")
|