Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
try:
|
2 |
cleaned_df = preprocess_excel(tmp_path)
|
3 |
vectorstore = build_vectorstore_from_dataframe(cleaned_df)
|
4 |
qa = create_qa_pipeline(vectorstore)
|
5 |
-
st.success("
|
6 |
|
7 |
if "chat_history" not in st.session_state:
|
8 |
st.session_state.chat_history = []
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import tempfile
|
4 |
+
import os
|
5 |
+
|
6 |
+
from langchain.document_loaders import DataFrameLoader
|
7 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
8 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
9 |
+
from langchain.vectorstores import FAISS
|
10 |
+
from langchain.chains import RetrievalQA
|
11 |
+
from langchain import HuggingFacePipeline
|
12 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
|
13 |
+
|
14 |
+
def preprocess_excel(file_path: str) -> pd.DataFrame:
|
15 |
+
df_raw = pd.read_excel(file_path, sheet_name='Data Base', header=None)
|
16 |
+
df = df_raw.iloc[4:].copy()
|
17 |
+
df.columns = df.iloc[0]
|
18 |
+
df = df[1:]
|
19 |
+
df.dropna(how='all', inplace=True)
|
20 |
+
df.dropna(axis=1, how='all', inplace=True)
|
21 |
+
df.reset_index(drop=True, inplace=True)
|
22 |
+
return df
|
23 |
+
|
24 |
+
def build_vectorstore_from_dataframe(df: pd.DataFrame):
|
25 |
+
df.fillna("", inplace=True)
|
26 |
+
df['combined_text'] = df.apply(lambda row: ' | '.join([str(cell) for cell in row]), axis=1)
|
27 |
+
|
28 |
+
docs_loader = DataFrameLoader(df[['combined_text']], page_content_column='combined_text')
|
29 |
+
documents = docs_loader.load()
|
30 |
+
|
31 |
+
splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=150)
|
32 |
+
split_docs = splitter.split_documents(documents)
|
33 |
+
|
34 |
+
embeddings = HuggingFaceEmbeddings(
|
35 |
+
model_name="sentence-transformers/all-MiniLM-l6-v2",
|
36 |
+
model_kwargs={"device": "cpu"},
|
37 |
+
encode_kwargs={"normalize_embeddings": False}
|
38 |
+
)
|
39 |
+
vectorstore = FAISS.from_documents(split_docs, embeddings)
|
40 |
+
return vectorstore
|
41 |
+
|
42 |
+
def create_qa_pipeline(vectorstore):
|
43 |
+
model_id = "google/flan-t5-base"
|
44 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
45 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_id)
|
46 |
+
|
47 |
+
gen_pipeline = pipeline("text2text-generation", model=model, tokenizer=tokenizer, max_length=512)
|
48 |
+
llm = HuggingFacePipeline(pipeline=gen_pipeline)
|
49 |
+
|
50 |
+
retriever = vectorstore.as_retriever()
|
51 |
+
qa = RetrievalQA.from_chain_type(llm=llm, retriever=retriever, chain_type="stuff", return_source_documents=False)
|
52 |
+
return qa
|
53 |
+
|
54 |
+
st.set_page_config(page_title="Excel-Aware RAG Chatbot", layout="wide")
|
55 |
+
st.title("📊 Excel-Aware RAG Chatbot (Professional QA)")
|
56 |
+
|
57 |
+
with st.sidebar:
|
58 |
+
uploaded_file = st.file_uploader("Upload your Excel file (.xlsx or .xlsm with 'Data Base' sheet)", type=["xlsx", "xlsm"])
|
59 |
+
|
60 |
+
if uploaded_file is not None:
|
61 |
+
with st.spinner("Processing and indexing your Excel sheet..."):
|
62 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".xlsm") as tmp_file:
|
63 |
+
tmp_file.write(uploaded_file.read())
|
64 |
+
tmp_path = tmp_file.name
|
65 |
+
|
66 |
try:
|
67 |
cleaned_df = preprocess_excel(tmp_path)
|
68 |
vectorstore = build_vectorstore_from_dataframe(cleaned_df)
|
69 |
qa = create_qa_pipeline(vectorstore)
|
70 |
+
st.success("✅ File processed and chatbot ready! Ask your questions below.")
|
71 |
|
72 |
if "chat_history" not in st.session_state:
|
73 |
st.session_state.chat_history = []
|