File size: 50,993 Bytes
a895648
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ebba09
 
a895648
2ebba09
 
 
 
 
 
 
 
 
 
a895648
2ebba09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a895648
2ebba09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a895648
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ebba09
 
 
 
 
 
 
 
a895648
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ebba09
a895648
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
/**
 * Layer Editor for Neural Network Playground
 * Handles editing of layer parameters through a modal interface
 */

(function() {
    console.log('Loading layer editor...');
    
    // Run immediately, don't wait for DOMContentLoaded
    initializeLayerEditor();
    
    function initializeLayerEditor() {
        // Get modal elements
        const modal = document.getElementById('layer-editor-modal');
        const form = modal.querySelector('.layer-form');
        const saveButton = modal.querySelector('.save-layer-btn');
        const closeButtons = modal.querySelectorAll('.close-modal');
        const modalTitle = modal.querySelector('.modal-title');
        
        if (!modal || !form) {
            console.error('Layer editor modal elements not found!');
            return;
        }
        
        // Current node being edited
        let currentNode = null;
        let currentConfig = null;
        
        // DEBUG: Log when script is loaded
        console.log('Layer editor initialized, waiting for openLayerEditor events', modal);
        
        // Listen for clicks on edit buttons directly
        document.addEventListener('click', function(e) {
            // Check if click was on an edit button
            if (e.target.classList.contains('node-edit-btn')) {
                e.preventDefault();
                e.stopPropagation();
                
                // Find the node
                const node = e.target.closest('.canvas-node');
                if (!node) {
                    console.error('Could not find node for edit button');
                    return;
                }
                
                // Get node info
                const nodeId = node.getAttribute('data-id');
                const nodeType = node.getAttribute('data-type');
                const nodeName = node.getAttribute('data-name') || node.querySelector('.node-title').textContent;
                
                console.log('Edit button clicked for node', nodeId, nodeType);
                
                // Store reference to current node and its config
                currentNode = node;
                currentConfig = node.layerConfig || {};
                
                // Update modal title
                modalTitle.textContent = `Edit ${nodeName || 'Layer'}`;
                
                // Generate form based on node type
                generateFormFields(form, nodeType, currentConfig);
                
                // Show modal with debuggable visible class
                modal.style.display = 'block';
                modal.setAttribute('data-visible', 'true');
                
                // Force reflow to ensure display takes effect
                void modal.offsetWidth;
                
                // Add active class for transition
                modal.classList.add('active');
            }
        });
        
        // Also listen for the openLayerEditor event (fallback)
        document.addEventListener('openLayerEditor', function(e) {
            const detail = e.detail;
            
            if (!detail || !detail.node) {
                console.error('Invalid layer editor data', detail);
                return;
            }
            
            console.log('openLayerEditor event received:', detail);
            
            // Store reference to current node and its config
            currentNode = detail.node;
            currentConfig = currentNode.layerConfig || {};
            
            // Update modal title
            modalTitle.textContent = `Edit ${detail.name || 'Layer'}`;
            
            // Generate form based on node type
            generateFormFields(form, detail.type, currentConfig);
            
            // Show modal
            modal.style.display = 'block';
            modal.setAttribute('data-visible', 'true');
            
            // Force reflow to ensure display takes effect
            void modal.offsetWidth;
            
            // Add active class for transition
            modal.classList.add('active');
            
            console.log('Opened layer editor for', detail.id, detail.type);
        });
        
        // Close modal when clicking close button or outside the modal
        closeButtons.forEach(button => {
            button.addEventListener('click', function() {
                modal.classList.remove('active');
                setTimeout(() => {
                    modal.style.display = 'none';
                    modal.removeAttribute('data-visible');
                }, 300); // Match transition duration from CSS
            });
        });
        
        window.addEventListener('click', function(e) {
            if (e.target === modal) {
                modal.classList.remove('active');
                setTimeout(() => {
                    modal.style.display = 'none';
                    modal.removeAttribute('data-visible');
                }, 300);
            }
        });
        
        // Handle form submission
        saveButton.addEventListener('click', function() {
            if (!currentNode || !currentConfig) {
                console.error('No node selected for editing');
                modal.classList.remove('active');
                setTimeout(() => {
                    modal.style.display = 'none';
                    modal.removeAttribute('data-visible');
                }, 300);
                return;
            }
            
            // Get updated values from form
            const formData = new FormData(form);
            const updatedConfig = { ...currentConfig };
            
            // Update config based on node type
            const nodeType = currentNode.getAttribute('data-type');
            
            // Process form data
            for (let [key, value] of formData.entries()) {
                // Handle arrays (from comma-separated values)
                if (key.endsWith('[]') && typeof value === 'string') {
                    const arrayKey = key.slice(0, -2);
                    // Parse array values more carefully - ensuring we get numbers
                    const values = value.split(',')
                        .map(v => {
                            const parsed = parseFloat(v.trim());
                            return isNaN(parsed) ? 0 : parsed; // Convert NaN to 0
                        });
                    updatedConfig[arrayKey] = values;
                    console.log(`Parsed array for ${arrayKey}:`, values);
                } 
                // Convert numeric values - more aggressively ensure integers for specific fields
                else if (key === 'filters' || key === 'units') {
                    updatedConfig[key] = parseInt(value) || (key === 'filters' ? 32 : key === 'units' ? 64 : 0);
                    console.log(`Parsed ${key} as integer:`, updatedConfig[key]);
                }
                // Other numeric values
                else if (!isNaN(value) && value !== '') {
                    updatedConfig[key] = parseFloat(value);
                } 
                // Everything else as-is
                else {
                    updatedConfig[key] = value;
                }
            }
            
            console.log('Updated config:', updatedConfig);
            
            // Update node with new config
            updateNodeWithConfig(currentNode, nodeType, updatedConfig);
            
            // Close modal
            modal.classList.remove('active');
            setTimeout(() => {
                modal.style.display = 'none';
                modal.removeAttribute('data-visible');
            }, 300);
            
            // Clear references
            currentNode = null;
            currentConfig = null;
        });
        
        console.log('Layer editor initialized and listeners attached');
    }
    
    /**
     * Generate form fields based on node type
     */
    function generateFormFields(form, nodeType, config) {
        // Clear existing form
        form.innerHTML = '';
        
        console.log('Generating form fields for', nodeType, 'with config', config);
        
        // Add output shape field to all node types
        const currentOutputShape = (config.outputShape || []).join(',');
        
        switch (nodeType) {
            case 'input':
                addFormField(form, 'Shape', 'shape[]', (config.shape || [28, 28, 1]).join(','), 'The input dimensions (e.g., 28,28,1 for MNIST images)');
                addFormField(form, 'Output Shape', 'outputShape[]', currentOutputShape, 'Manual override for output shape (normally matches input shape)');
                break;
                
            case 'hidden':
                addFormField(form, 'Units', 'units', config.units || 128, 'Number of neurons in this layer');
                addFormField(form, 'Activation', 'activation', config.activation || 'relu', 'Activation function', 'select', {
                    options: ['relu', 'sigmoid', 'tanh', 'leaky_relu', 'linear']
                });
                addFormField(form, 'Output Shape', 'outputShape[]', currentOutputShape, 'Manual override for output shape (normally [units])');
                break;
                
            case 'output':
                addFormField(form, 'Units', 'units', config.units || 10, 'Number of output neurons (e.g., 10 for MNIST)');
                addFormField(form, 'Activation', 'activation', config.activation || 'softmax', 'Activation function', 'select', {
                    options: ['softmax', 'sigmoid', 'linear']
                });
                addFormField(form, 'Output Shape', 'outputShape[]', currentOutputShape, 'Manual override for output shape (normally [units])');
                break;
                
            case 'conv':
                addFormField(form, 'Filters', 'filters', config.filters || 32, 'Number of filters (output channels)');
                addFormField(form, 'Kernel Size', 'kernelSize[]', (config.kernelSize || [3, 3]).join(','), 'Size of the convolution kernel (e.g., 3,3)');
                addFormField(form, 'Strides', 'strides[]', (config.strides || [1, 1]).join(','), 'Stride of the convolution (e.g., 1,1)');
                addFormField(form, 'Padding', 'padding', config.padding || 'same', 'Padding method', 'select', {
                    options: ['same', 'valid']
                });
                addFormField(form, 'Activation', 'activation', config.activation || 'relu', 'Activation function', 'select', {
                    options: ['relu', 'sigmoid', 'tanh', 'leaky_relu', 'linear']
                });
                addFormField(form, 'Output Shape', 'outputShape[]', currentOutputShape, 'Manual override for calculated output shape');
                break;
                
            case 'pool':
                addFormField(form, 'Pool Size', 'poolSize[]', (config.poolSize || [2, 2]).join(','), 'Size of the pooling window (e.g., 2,2)');
                addFormField(form, 'Strides', 'strides[]', (config.strides || [2, 2]).join(','), 'Stride of the pooling operation (e.g., 2,2)');
                addFormField(form, 'Padding', 'padding', config.padding || 'valid', 'Padding method', 'select', {
                    options: ['same', 'valid']
                });
                addFormField(form, 'Pool Type', 'poolType', config.poolType || 'max', 'Type of pooling', 'select', {
                    options: ['max', 'average']
                });
                addFormField(form, 'Output Shape', 'outputShape[]', currentOutputShape, 'Manual override for calculated output shape');
                break;
            
            case 'lstm':
                addFormField(form, 'Units', 'units', config.units || 64, 'Number of LSTM units');
                addFormField(form, 'Return Sequences', 'returnSequences', config.returnSequences !== false ? 'true' : 'false', 'Return the full sequence or just the final state', 'select', {
                    options: ['true', 'false']
                });
                addFormField(form, 'Activation', 'activation', config.activation || 'tanh', 'Activation function', 'select', {
                    options: ['tanh', 'relu', 'sigmoid']
                });
                addFormField(form, 'Recurrent Activation', 'recurrentActivation', config.recurrentActivation || 'sigmoid', 'Recurrent activation function', 'select', {
                    options: ['sigmoid', 'tanh', 'relu']
                });
                addFormField(form, 'Use Bias', 'useBias', config.useBias !== false ? 'true' : 'false', 'Include bias terms', 'select', {
                    options: ['true', 'false']
                });
                addFormField(form, 'Output Shape', 'outputShape[]', currentOutputShape, 'Manual override for calculated output shape');
                break;
            
            case 'rnn':
                addFormField(form, 'Units', 'units', config.units || 32, 'Number of RNN units');
                addFormField(form, 'Return Sequences', 'returnSequences', config.returnSequences !== false ? 'true' : 'false', 'Return the full sequence or just the final state', 'select', {
                    options: ['true', 'false']
                });
                addFormField(form, 'Activation', 'activation', config.activation || 'tanh', 'Activation function', 'select', {
                    options: ['tanh', 'relu', 'sigmoid']
                });
                addFormField(form, 'Use Bias', 'useBias', config.useBias !== false ? 'true' : 'false', 'Include bias terms', 'select', {
                    options: ['true', 'false']
                });
                addFormField(form, 'Output Shape', 'outputShape[]', currentOutputShape, 'Manual override for calculated output shape');
                break;
            
            case 'gru':
                addFormField(form, 'Units', 'units', config.units || 48, 'Number of GRU units');
                addFormField(form, 'Return Sequences', 'returnSequences', config.returnSequences !== false ? 'true' : 'false', 'Return the full sequence or just the final state', 'select', {
                    options: ['true', 'false']
                });
                addFormField(form, 'Activation', 'activation', config.activation || 'tanh', 'Activation function', 'select', {
                    options: ['tanh', 'relu', 'sigmoid']
                });
                addFormField(form, 'Recurrent Activation', 'recurrentActivation', config.recurrentActivation || 'sigmoid', 'Recurrent activation function', 'select', {
                    options: ['sigmoid', 'tanh', 'relu']
                });
                addFormField(form, 'Use Bias', 'useBias', config.useBias !== false ? 'true' : 'false', 'Include bias terms', 'select', {
                    options: ['true', 'false']
                });
                addFormField(form, 'Output Shape', 'outputShape[]', currentOutputShape, 'Manual override for calculated output shape');
                break;
            
            default:
                form.innerHTML = '<p>No editable parameters for this layer type.</p>';
        }
    }
    
    /**
     * Add a form field to the form
     */
    function addFormField(form, label, name, value, helpText, type = 'text', options = {}) {
        const fieldContainer = document.createElement('div');
        fieldContainer.className = 'form-field';
        
        const labelElem = document.createElement('label');
        labelElem.textContent = label;
        labelElem.setAttribute('for', name);
        
        let inputElem;
        
        if (type === 'select') {
            inputElem = document.createElement('select');
            inputElem.name = name;
            inputElem.id = name;
            
            if (options.options) {
                options.options.forEach(option => {
                    const optionElem = document.createElement('option');
                    optionElem.value = option;
                    optionElem.textContent = option;
                    
                    if (option === value) {
                        optionElem.selected = true;
                    }
                    
                    inputElem.appendChild(optionElem);
                });
            }
        } else {
            inputElem = document.createElement('input');
            inputElem.type = type;
            inputElem.name = name;
            inputElem.id = name;
            inputElem.value = value;
            
            if (options.min !== undefined) inputElem.min = options.min;
            if (options.max !== undefined) inputElem.max = options.max;
            if (options.step !== undefined) inputElem.step = options.step;
        }
        
        const helpElem = document.createElement('small');
        helpElem.className = 'help-text';
        helpElem.textContent = helpText;
        
        fieldContainer.appendChild(labelElem);
        fieldContainer.appendChild(inputElem);
        fieldContainer.appendChild(helpElem);
        
        form.appendChild(fieldContainer);
    }
    
    /**
     * Update node with new configuration
     */
    function updateNodeWithConfig(node, nodeType, config) {
        if (!node) {
            console.error('Cannot update node: Node is null');
            return;
        }
        
        console.log(`Starting to update node ${node.getAttribute('data-id')} of type ${nodeType}`, config);
        
        // Store updated config on the node
        node.layerConfig = { ...config }; // Create a copy to avoid reference issues
        
        // Get node elements
        const nodeId = node.getAttribute('data-id');
        const inputShapeDisplay = node.querySelector('.input-shape');
        const outputShapeDisplay = node.querySelector('.output-shape');
        const paramsDisplay = node.querySelector('.node-parameters');
        const dimensionsDisplay = node.querySelector('.node-dimensions');
        const paramsDetailsDisplay = node.querySelector('.params-details');
        
        // Debug check
        if (!inputShapeDisplay || !outputShapeDisplay || !paramsDisplay) {
            console.warn('Some node displays not found:', {
                inputShapeDisplay,
                outputShapeDisplay,
                paramsDisplay
            });
        }
        
        // Handle manual output shape override first
        let manualOutputShape = null;
        if (config.outputShape && Array.isArray(config.outputShape) && config.outputShape.length > 0 
            && config.outputShape.some(dim => dim !== '?' && dim !== '')) {
            // User has provided a manual output shape
            manualOutputShape = [...config.outputShape];
            console.log('Manual output shape provided:', manualOutputShape);
        }
        
        // Update output shape and parameters
        let outputShape = manualOutputShape || config.outputShape;
        let parameters = config.parameters;
        let inputShape = config.inputShape;
        
        console.log('Before calculating: outputShape =', outputShape, 'parameters =', parameters);
        
        // Get connections to find input shape if not present
        if (!inputShape && window.dragDrop && window.dragDrop.getNetworkArchitecture) {
            const networkLayers = window.dragDrop.getNetworkArchitecture();
            const connections = networkLayers.connections || [];
            const targetsThisNode = connections.filter(conn => conn.target === nodeId);
            
            if (targetsThisNode.length > 0) {
                // Find the source node's output shape
                const sourceId = targetsThisNode[0].source;
                const sourceLayer = networkLayers.layers.find(layer => layer.id === sourceId);
                if (sourceLayer && sourceLayer.config && sourceLayer.config.outputShape) {
                    inputShape = [...sourceLayer.config.outputShape];
                    config.inputShape = inputShape;
                    console.log('Found input shape from connections:', inputShape);
                }
            }
        }
        
        // Try to calculate new output shape and parameters only if manual output shape is not provided
        if (!manualOutputShape && window.neuralNetwork) {
            console.log('Using neural network module to calculate shapes and parameters');
            if (window.neuralNetwork.calculateOutputShape) {
                try {
                    const newOutputShape = window.neuralNetwork.calculateOutputShape(config, nodeType);
                    if (newOutputShape) {
                        outputShape = newOutputShape;
                        config.outputShape = newOutputShape;
                        console.log('Calculated output shape:', outputShape);
                    }
                } catch (error) {
                    console.error('Error calculating output shape:', error);
                }
            }
            
            if (window.neuralNetwork.calculateParameters) {
                try {
                    const newParameters = window.neuralNetwork.calculateParameters(config, nodeType);
                    if (newParameters !== undefined) {
                        parameters = newParameters;
                        config.parameters = newParameters;
                        console.log('Calculated parameters:', parameters);
                    }
                } catch (error) {
                    console.error('Error calculating parameters:', error);
                }
            }
        } else if (!manualOutputShape) {
            // Perform basic calculations based on node type only if manual shape isn't provided
            console.log('Falling back to basic parameter calculations');
            
            switch (nodeType) {
                case 'input':
                    if (!manualOutputShape) {
                        outputShape = config.shape;
                    }
                    parameters = 0;
                    break;
                    
                case 'hidden':
                    const units = parseInt(config.units) || 128;
                    if (!manualOutputShape) {
                        outputShape = [units];
                    }
                    if (inputShape) {
                        const inputSize = inputShape.reduce((a, b) => a * b, 1);
                        parameters = inputSize * units + units; // weights + biases
                        console.log(`Hidden layer params: ${inputSize} inputs × ${units} units + ${units} biases = ${parameters}`);
                    } else {
                        console.log('No input shape available for hidden layer parameter calculation');
                        parameters = units; // Just biases if we don't know input size
                    }
                    break;
                    
                case 'output':
                    const outUnits = parseInt(config.units) || 10;
                    if (!manualOutputShape) {
                        outputShape = [outUnits];
                    }
                    if (inputShape) {
                        const inputSize = inputShape.reduce((a, b) => a * b, 1);
                        parameters = inputSize * outUnits + outUnits; // weights + biases
                        console.log(`Output layer params: ${inputSize} inputs × ${outUnits} units + ${outUnits} biases = ${parameters}`);
                    } else {
                        console.log('No input shape available for output layer parameter calculation');
                        parameters = outUnits; // Just biases if we don't know input size
                    }
                    break;
                    
                case 'conv':
                    if (inputShape && inputShape.length >= 3 && !manualOutputShape) {
                        // Very explicit type conversion - ensure all values are numbers
                        const height = Math.max(1, parseInt(inputShape[0]) || 1);  // Ensure at least 1
                        const width = Math.max(1, parseInt(inputShape[1]) || 1);   // Ensure at least 1
                        const channels = Math.max(1, parseInt(inputShape[2]) || 1); // Ensure at least 1
                        
                        console.log(`Conv2D INPUT SHAPE debug: [${height}, ${width}, ${channels}]`, 
                            {original: inputShape, parsed: [height, width, channels]});
                        
                        // Ensure filters is a positive number
                        const filters = Math.max(1, parseInt(config.filters) || 32);
                        
                        // Explicit processing of kernelSize with safety checks
                        let kernelSize = [3, 3]; // Default fallback
                        if (config.kernelSize) {
                            if (typeof config.kernelSize === 'string') {
                                kernelSize = config.kernelSize.split(',')
                                    .map(v => Math.max(1, parseInt(v.trim()) || 1)); // Ensure at least 1
                            } else if (Array.isArray(config.kernelSize)) {
                                kernelSize = config.kernelSize
                                    .map(v => Math.max(1, parseInt(v) || 1)); // Ensure at least 1
                            }
                        }
                        
                        // Explicit processing of strides with safety checks
                        let strides = [1, 1]; // Default fallback
                        if (config.strides) {
                            if (typeof config.strides === 'string') {
                                strides = config.strides.split(',')
                                    .map(v => Math.max(1, parseInt(v.trim()) || 1)); // Ensure at least 1
                            } else if (Array.isArray(config.strides)) {
                                strides = config.strides
                                    .map(v => Math.max(1, parseInt(v) || 1)); // Ensure at least 1
                            }
                        }
                        
                        // Ensure we have at least 2 elements for kernelSize and strides and all values are at least 1
                        kernelSize = kernelSize.length >= 2 ? 
                            [Math.max(1, kernelSize[0]), Math.max(1, kernelSize[1])] : 
                            [Math.max(1, kernelSize[0] || 3), Math.max(1, kernelSize[0] || 3)];
                            
                        strides = strides.length >= 2 ? 
                            [Math.max(1, strides[0]), Math.max(1, strides[1])] : 
                            [Math.max(1, strides[0] || 1), Math.max(1, strides[0] || 1)];
                        
                        console.log(`Conv2D CONFIG debug:`, {
                            filters: filters,
                            kernelSize: kernelSize,
                            strides: strides
                        });
                        
                        // Store cleaned values back in config
                        config.filters = filters;
                        config.kernelSize = kernelSize;
                        config.strides = strides;
                        
                        const padding = config.padding || 'same';
                        
                        // Calculate output dimensions based on padding
                        let outHeight, outWidth;
                        if (padding === 'same') {
                            outHeight = Math.ceil(height / strides[0]);
                            outWidth = Math.ceil(width / strides[1]);
                        } else { // 'valid' padding
                            outHeight = Math.ceil((height - kernelSize[0] + 1) / strides[0]);
                            outWidth = Math.ceil((width - kernelSize[1] + 1) / strides[1]);
                        }
                        
                        // Ensure output dimensions are at least 1
                        outHeight = Math.max(1, outHeight);
                        outWidth = Math.max(1, outWidth);
                        
                        // Final output shape
                        outputShape = [outHeight, outWidth, filters];
                        
                        // Calculate parameters step by step to avoid any overflow or multiplication errors
                        const kh = Number(kernelSize[0]);
                        const kw = Number(kernelSize[1]);
                        const c = Number(channels);
                        const f = Number(filters);
                        
                        // Check for any zeros or negative values that would make the calculation invalid
                        if (kh <= 0 || kw <= 0 || c <= 0 || f <= 0) {
                            console.error(`Invalid Conv2D parameter values: kh=${kh}, kw=${kw}, c=${c}, f=${f}`);
                            parameters = 0;
                        } else {
                            // Calculate with explicit steps to avoid any overflow
                            const kernelParams = kh * kw * c * f;
                            const biasParams = f;
                            parameters = kernelParams + biasParams;
                            
                            console.log(`Conv2D CALCULATION STEPS:
                              Kernel height (kh) = ${kh}
                              Kernel width (kw) = ${kw}
                              Input channels (c) = ${c}
                              Filters (f) = ${f}
                              Kernel params = ${kh} × ${kw} × ${c} × ${f} = ${kernelParams}
                              Bias params = ${biasParams}
                              Total params = ${kernelParams} + ${biasParams} = ${parameters}
                            `);
                        }
                        
                        console.log(`Conv2D output shape: ${outHeight}×${outWidth}×${filters}`);
                    } else {
                        console.log('Cannot calculate Conv2D parameters - invalid input shape or manual shape provided:', inputShape);
                        if (!manualOutputShape) {
                            const filters = parseInt(config.filters) || 32;
                            outputShape = ['?', '?', filters];
                        }
                        parameters = 0;  // Set to 0 instead of '?' to avoid display issues
                    }
                    break;
                    
                case 'pool':
                    if (inputShape && inputShape.length >= 3 && !manualOutputShape) {
                        const [height, width, channels] = inputShape;
                        const poolSize = config.poolSize || [2, 2];
                        const stride = config.strides || poolSize;
                        const padding = config.padding || 'valid';
                        
                        // Calculate output dimensions
                        let outHeight, outWidth;
                        if (padding === 'same') {
                            outHeight = Math.ceil(height / stride[0]);
                            outWidth = Math.ceil(width / stride[1]);
                        } else { // 'valid' padding
                            outHeight = Math.ceil((height - poolSize[0] + 1) / stride[0]);
                            outWidth = Math.ceil((width - poolSize[1] + 1) / stride[1]);
                        }
                        
                        outputShape = [outHeight, outWidth, channels];
                        parameters = 0; // Pooling layers have no parameters
                        console.log('Pooling layer has 0 parameters');
                    } else {
                        console.log('Cannot calculate pooling output shape without proper input shape or manual shape provided');
                        if (!manualOutputShape) {
                            outputShape = ['?', '?', '?'];
                        }
                        parameters = 0;
                    }
                    break;
                    
                case 'rnn':
                    const rnnUnits = parseInt(config.units) || 32;
                    if (!manualOutputShape) {
                        // Output shape depends on return_sequences
                        // If return_sequences is true, output is [input_sequence_length, units]
                        // If return_sequences is false, output is [units]
                        const returnSequences = config.returnSequences === 'true' || config.returnSequences === true;
                        if (returnSequences && inputShape && inputShape.length > 0) {
                            // If we have an input shape, use the first dimension as sequence length
                            outputShape = [inputShape[0], rnnUnits];
                        } else {
                            outputShape = [rnnUnits];
                        }
                    }
                    if (inputShape && inputShape.length > 0) {
                        // For RNN, parameters = (input_features * units + units * units + units)
                        // Where:
                        // - input_features * units: weights from input to hidden
                        // - units * units: recurrent weights
                        // - units: bias terms (if using bias)
                        
                        // Get input features (last dimension of input shape)
                        const inputFeatures = inputShape[inputShape.length - 1];
                        const useBias = config.useBias !== 'false' && config.useBias !== false;
                        
                        const inputToHiddenParams = inputFeatures * rnnUnits;
                        const recurrentParams = rnnUnits * rnnUnits;
                        const biasParams = useBias ? rnnUnits : 0;
                        
                        parameters = inputToHiddenParams + recurrentParams + biasParams;
                        
                        console.log(`RNN parameters calculation:
                            Input features: ${inputFeatures}
                            RNN units: ${rnnUnits}
                            Input-to-hidden params: ${inputFeatures} * ${rnnUnits} = ${inputToHiddenParams}
                            Recurrent params: ${rnnUnits} * ${rnnUnits} = ${recurrentParams}
                            Bias params: ${biasParams}
                            Total: ${parameters}`);
                    } else {
                        console.log('No input shape available for RNN parameter calculation');
                        parameters = rnnUnits * 2; // Just a rough estimate if input shape is unknown
                    }
                    break;
                    
                case 'lstm':
                    const lstmUnits = parseInt(config.units) || 64;
                    if (!manualOutputShape) {
                        // Output shape depends on return_sequences
                        const returnSequences = config.returnSequences === 'true' || config.returnSequences === true;
                        if (returnSequences && inputShape && inputShape.length > 0) {
                            outputShape = [inputShape[0], lstmUnits];
                        } else {
                            outputShape = [lstmUnits];
                        }
                    }
                    if (inputShape && inputShape.length > 0) {
                        // For LSTM, we have 4 gates (input, forget, cell, output)
                        // parameters = 4 * (input_features * units + units * units + units)
                        
                        const inputFeatures = inputShape[inputShape.length - 1];
                        const useBias = config.useBias !== 'false' && config.useBias !== false;
                        
                        const inputToHiddenParams = 4 * (inputFeatures * lstmUnits);
                        const recurrentParams = 4 * (lstmUnits * lstmUnits);
                        const biasParams = useBias ? 4 * lstmUnits : 0;
                        
                        parameters = inputToHiddenParams + recurrentParams + biasParams;
                        
                        console.log(`LSTM parameters calculation:
                            Input features: ${inputFeatures}
                            LSTM units: ${lstmUnits}
                            Gates: 4 (input, forget, cell, output)
                            Input-to-hidden params: 4 * (${inputFeatures} * ${lstmUnits}) = ${inputToHiddenParams}
                            Recurrent params: 4 * (${lstmUnits} * ${lstmUnits}) = ${recurrentParams}
                            Bias params: ${biasParams}
                            Total: ${parameters}`);
                    } else {
                        console.log('No input shape available for LSTM parameter calculation');
                        parameters = lstmUnits * 8; // Rough estimate
                    }
                    break;
                    
                case 'gru':
                    const gruUnits = parseInt(config.units) || 48;
                    if (!manualOutputShape) {
                        // Output shape depends on return_sequences
                        const returnSequences = config.returnSequences === 'true' || config.returnSequences === true;
                        if (returnSequences && inputShape && inputShape.length > 0) {
                            outputShape = [inputShape[0], gruUnits];
                        } else {
                            outputShape = [gruUnits];
                        }
                    }
                    if (inputShape && inputShape.length > 0) {
                        // For GRU, we have 3 gates (update, reset, new)
                        // parameters = 3 * (input_features * units + units * units + units)
                        
                        const inputFeatures = inputShape[inputShape.length - 1];
                        const useBias = config.useBias !== 'false' && config.useBias !== false;
                        
                        const inputToHiddenParams = 3 * (inputFeatures * gruUnits);
                        const recurrentParams = 3 * (gruUnits * gruUnits);
                        const biasParams = useBias ? 3 * gruUnits : 0;
                        
                        parameters = inputToHiddenParams + recurrentParams + biasParams;
                        
                        console.log(`GRU parameters calculation:
                            Input features: ${inputFeatures}
                            GRU units: ${gruUnits}
                            Gates: 3 (update, reset, new)
                            Input-to-hidden params: 3 * (${inputFeatures} * ${gruUnits}) = ${inputToHiddenParams}
                            Recurrent params: 3 * (${gruUnits} * ${gruUnits}) = ${recurrentParams}
                            Bias params: ${biasParams}
                            Total: ${parameters}`);
                    } else {
                        console.log('No input shape available for GRU parameter calculation');
                        parameters = gruUnits * 6; // Rough estimate
                    }
                    break;
            }
        }
        
        // Make sure we have the output shape in the config
        if (outputShape) {
            config.outputShape = outputShape;
        }
        
        // Updated detailed parameter description
        let paramsDetails = '';
        switch (nodeType) {
            case 'hidden':
                paramsDetails = `Units: ${config.units}<br>Activation: ${config.activation || 'relu'}`;
                break;
            case 'output':
                paramsDetails = `Units: ${config.units}<br>Activation: ${config.activation || 'softmax'}`;
                break;
            case 'conv':
                paramsDetails = `Filters: ${config.filters}<br>Kernel: ${(config.kernelSize || [3, 3]).join('×')}<br>Strides: ${(config.strides || [1, 1]).join('×')}<br>Padding: ${config.padding || 'same'}`;
                break;
            case 'pool':
                paramsDetails = `Pool size: ${(config.poolSize || [2, 2]).join('×')}<br>Strides: ${(config.strides || [2, 2]).join('×')}<br>Padding: ${config.padding || 'valid'}<br>Type: ${config.poolType || 'max'}`;
                break;
            case 'input':
                paramsDetails = `Shape: ${(config.shape || [28, 28, 1]).join('×')}`;
                break;
            case 'rnn':
                paramsDetails = `Units: ${config.units}<br>Return Sequences: ${config.returnSequences === 'true' ? 'Yes' : 'No'}`;
                break;
            case 'lstm':
                paramsDetails = `Units: ${config.units}<br>Return Sequences: ${config.returnSequences === 'true' ? 'Yes' : 'No'}`;
                break;
            case 'gru':
                paramsDetails = `Units: ${config.units}<br>Return Sequences: ${config.returnSequences === 'true' ? 'Yes' : 'No'}`;
                break;
        }
        
        // Update displays
        if (outputShape && outputShapeDisplay) {
            outputShapeDisplay.textContent = `[${Array.isArray(outputShape) ? outputShape.join(' × ') : outputShape}]`;
            // Highlight the output shape to show it's been updated
            const originalBackground = outputShapeDisplay.style.backgroundColor;
            outputShapeDisplay.style.backgroundColor = '#f0f9ff';
            setTimeout(() => {
                outputShapeDisplay.style.backgroundColor = originalBackground;
            }, 500);
            console.log('Updated output shape display with', outputShape);
        }
        
        if (inputShape && inputShapeDisplay) {
            inputShapeDisplay.textContent = `[${Array.isArray(inputShape) ? inputShape.join(' × ') : inputShape}]`;
            console.log('Updated input shape display');
        } else if (inputShapeDisplay && nodeType !== 'input') {
            inputShapeDisplay.textContent = 'Connect input';
        }
        
        // Ensure parameters is always a number for display
        if (parameters !== undefined) {
            if (typeof parameters === 'string') {
                if (parameters === '?') {
                    parameters = 0;
                } else {
                    // Try to parse it as a number
                    parameters = parseInt(parameters) || 0;
                }
            }
            
            // Debug log with type information
            console.log(`Parameter display value: ${parameters} (${typeof parameters})`);
            
            if (paramsDisplay) {
                // Special display for Conv2D
                if (nodeType === 'conv') {
                    // Store the numeric value in the model
                    config.parameters = parameters;
                    
                    // Format for display
                    const displayValue = formatNumber(parameters);
                    paramsDisplay.textContent = `Params: ${displayValue}`;
                    console.log(`Updated Conv2D parameters display: ${displayValue}`);
                    
                    // Change background color briefly to indicate update
                    const originalColor = paramsDisplay.style.backgroundColor;
                    paramsDisplay.style.backgroundColor = '#f0f9ff';
                    setTimeout(() => {
                        paramsDisplay.style.backgroundColor = originalColor;
                    }, 500);
                } else {
                    // Regular update for other node types
                    paramsDisplay.textContent = `Params: ${formatNumber(parameters)}`;
                }
                console.log('Updated parameters display');
            }
        }
        
        if (paramsDetailsDisplay) {
            paramsDetailsDisplay.innerHTML = paramsDetails;
            console.log('Updated parameter details display');
        }
        
        if (dimensionsDisplay && outputShape) {
            let dimensionsText = '';
            if (nodeType === 'hidden' || nodeType === 'output' || nodeType === 'rnn' || nodeType === 'lstm' || nodeType === 'gru') {
                dimensionsText = config.units || '';
            } else if (nodeType === 'conv' || nodeType === 'pool') {
                if (Array.isArray(outputShape)) {
                    dimensionsText = outputShape.join('×');
                } else {
                    dimensionsText = outputShape;
                }
            } else if (nodeType === 'input') {
                if (Array.isArray(config.shape)) {
                    dimensionsText = config.shape.join('×');
                } else {
                    dimensionsText = config.shape || '';
                }
            }
            dimensionsDisplay.textContent = dimensionsText;
            console.log('Updated dimensions display');
        }
        
        // Update the model to ensure propagation of changes
        if (window.dragDrop) {
            if (window.dragDrop.getNetworkArchitecture) {
                const networkLayers = window.dragDrop.getNetworkArchitecture();
                const layerIndex = networkLayers.layers.findIndex(layer => layer.id === nodeId);
                
                if (layerIndex !== -1) {
                    networkLayers.layers[layerIndex].config = { ...config };
                    if (parameters !== undefined) {
                        networkLayers.layers[layerIndex].parameters = parameters;
                    }
                    
                    // Update connections to propagate parameter changes to connected nodes
                    if (window.dragDrop.updateConnections) {
                        window.dragDrop.updateConnections();
                    }
                    
                    // Update downstream nodes to propagate parameter changes through the network
                    if (window.dragDrop.forceUpdateNetworkParameters) {
                        console.log('Forcing network parameter update');
                        
                        // Add a small delay to ensure the current node update is complete
                        setTimeout(() => {
                            window.dragDrop.forceUpdateNetworkParameters();
                            
                            // Another update after a short delay for deeper propagation
                            setTimeout(() => {
                                window.dragDrop.updateConnections();
                                console.log('Final connection update completed');
                            }, 100);
                        }, 50);
                    }
                    
                    // Notify about the network update
                    document.dispatchEvent(new CustomEvent('networkUpdated', {
                        detail: networkLayers
                    }));
                    console.log('Dispatched networkUpdated event with updated model');
                } else {
                    console.warn(`Node ${nodeId} not found in network model layers`);
                }
            }
            
            // Force re-rendering of all connections
            if (window.dragDrop.updateConnections) {
                setTimeout(() => {
                    window.dragDrop.updateConnections();
                    console.log('Updated all connections after parameter change');
                }, 50);
            }
        }
        
        console.log(`Completed update of node ${nodeId} with config:`, config);
    }
    
    /**
     * Format large numbers for display
     */
    function formatNumber(num) {
        // Safety check for invalid values
        if (num === null || num === undefined) return 'N/A';
        if (num === 0) return '0';
        
        // Try to convert strings to numbers
        if (typeof num === 'string') {
            if (num === '?' || num.toLowerCase() === 'n/a') return 'N/A';
            num = parseFloat(num);
        }
        
        // Handle NaN
        if (isNaN(num)) return 'N/A';
        
        // Format based on size
        if (num >= 1e9) return (num / 1e9).toFixed(2) + 'B';
        if (num >= 1e6) return (num / 1e6).toFixed(2) + 'M';
        if (num >= 1e3) return (num / 1e3).toFixed(2) + 'K';
        
        // Handle smaller numbers with decimal places
        if (num < 1e3 && num % 1 !== 0) {
            return num.toFixed(2);
        }
        
        return num.toString();
    }
    
    /**
     * Helper function to manually recalculate Conv2D parameters
     * This can be called from the console for debugging
     */
    function forceRecalculateConv2DParameters(nodeId) {
        // If no ID provided, try to find all Conv2D nodes
        if (!nodeId) {
            const conv2dNodes = document.querySelectorAll('.canvas-node[data-type="conv"]');
            if (conv2dNodes.length === 0) {
                console.log('No Conv2D nodes found to update');
                return;
            }
            
            console.log(`Found ${conv2dNodes.length} Conv2D nodes to update`);
            
            // Update each Conv2D node
            conv2dNodes.forEach(node => {
                const id = node.getAttribute('data-id');
                console.log(`Updating Conv2D node ${id}`);
                forceRecalculateConv2DParameters(id);
            });
            return;
        }
        
        // Find the specific node
        const node = document.querySelector(`.canvas-node[data-id="${nodeId}"]`);
        if (!node) {
            console.error(`Node with ID ${nodeId} not found`);
            return;
        }
        
        // Check if it's a Conv2D node
        const nodeType = node.getAttribute('data-type');
        if (nodeType !== 'conv') {
            console.error(`Node ${nodeId} is not a Conv2D node (type: ${nodeType})`);
            return;
        }
        
        // Get the current config
        const config = node.layerConfig || {};
        
        // Force the update
        console.log(`Forcing parameter recalculation for Conv2D node ${nodeId}`);
        updateNodeWithConfig(node, 'conv', config);
        
        // If dragDrop is available, force a network update
        if (window.dragDrop && window.dragDrop.forceUpdateNetworkParameters) {
            setTimeout(() => {
                window.dragDrop.forceUpdateNetworkParameters();
            }, 100);
        }
    }
    
    // Expose helper function to window for debugging
    window.forceRecalculateConv2DParameters = forceRecalculateConv2DParameters;
})();