File size: 28,204 Bytes
a895648
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
// Forward Propagation Animation
document.addEventListener('DOMContentLoaded', () => {
    // Set initialization flag
    window.forwardPropInitialized = true;
    console.log('Forward propagation script initialized');
    
    // Canvas initialization function
    function initializeCanvas() {
        console.log('Initializing forward propagation canvas');
        const canvas = document.getElementById('forward-canvas');
        if (!canvas) {
            console.error('Forward propagation canvas not found!');
            return;
        }
        
        const ctx = canvas.getContext('2d');
        if (!ctx) {
            console.error('Could not get 2D context for forward propagation canvas');
            return;
        }
        
        // Set canvas dimensions
        const container = canvas.parentElement;
        if (container) {
            canvas.width = container.clientWidth || 800;
            canvas.height = container.clientHeight || 400;
        } else {
            canvas.width = 800;
            canvas.height = 400;
        }
        
        // Clear canvas
        ctx.clearRect(0, 0, canvas.width, canvas.height);
        
        // Reset animation state and redraw
        resetAnimation();
        drawNetwork();
    }
    
    // Register the canvas initialization function with tab manager
    if (typeof window !== 'undefined') {
        window.initForwardPropCanvas = initializeCanvas;
    }
    
    // Canvas and context
    const canvas = document.getElementById('forward-canvas');
    const ctx = canvas.getContext('2d');
    
    // Control elements
    const startButton = document.getElementById('start-forward-animation');
    const pauseButton = document.getElementById('pause-forward-animation');
    const resetButton = document.getElementById('reset-forward-animation');
    const inputSelector = document.getElementById('input-selector');
    
    // Display elements
    const currentLayerText = document.getElementById('current-layer');
    const forwardDescription = document.getElementById('forward-description');
    const computationValues = document.getElementById('computation-values');
    
    // Animation state
    let animationState = {
        running: false,
        currentLayer: 0, // 0: input, 1: hidden, 2: output
        currentNeuron: -1, // -1 means all neurons in the layer are being processed
        network: null,
        animationFrameId: null,
        lastTimestamp: 0,
        speed: 3, // Speed of animation
        highlightedConnections: []
    };
    
    // Neuron states
    const INACTIVE = 0;
    const COMPUTING = 1;
    const ACTIVATED = 2;
    
    // Neural network class for visualization
    class ForwardNetwork {
        constructor() {
            // Architecture: 3 input neurons, 4 hidden neurons with ReLU, 2 output neurons with sigmoid
            this.layers = [
                { neurons: 3, activation: 'none', name: 'Input' },
                { neurons: 4, activation: 'relu', name: 'Hidden' },
                { neurons: 2, activation: 'sigmoid', name: 'Output' }
            ];
            
            // Generate random weights and biases
            this.weights = [
                this.generateRandomWeights(3, 4), // Input to Hidden
                this.generateRandomWeights(4, 2)  // Hidden to Output
            ];
            
            this.biases = [
                Array(4).fill(0).map(() => Math.random() * 0.4 - 0.2), // Hidden layer biases
                Array(2).fill(0).map(() => Math.random() * 0.4 - 0.2)  // Output layer biases
            ];
            
            // Neuron values - inputs, weighted sums (z), and activations (a)
            this.inputs = [
                [0.8, 0.2, 0.5], // Default input values
                Array(4).fill(0), // Hidden layer
                Array(2).fill(0)  // Output layer
            ];
            
            this.weightedSums = [
                Array(3).fill(0), // Input layer doesn't have weighted sums
                Array(4).fill(0), // Hidden layer weighted sums
                Array(2).fill(0)  // Output layer weighted sums
            ];
            
            this.activations = [
                Array(3).fill(0), // Input layer activations are just the inputs
                Array(4).fill(0), // Hidden layer activations
                Array(2).fill(0)  // Output layer activations
            ];
            
            // Neuron states for animation
            this.neuronStates = [
                Array(3).fill(INACTIVE), // Input layer neuron states
                Array(4).fill(INACTIVE), // Hidden layer neuron states
                Array(2).fill(INACTIVE)  // Output layer neuron states
            ];
            
            // Computation details for display
            this.currentComputation = {
                layer: 0,
                neuron: 0,
                inputs: [],
                weights: [],
                weightedSum: 0,
                bias: 0,
                activation: 0
            };
        }
        
        // Generate random weights
        generateRandomWeights(inputSize, outputSize) {
            const weights = [];
            for (let i = 0; i < inputSize * outputSize; i++) {
                weights.push(Math.random() * 0.4 - 0.2); // Random between -0.2 and 0.2
            }
            return weights;
        }
        
        // ReLU activation function
        relu(x) {
            return Math.max(0, x);
        }
        
        // Sigmoid activation function
        sigmoid(x) {
            return 1 / (1 + Math.exp(-x));
        }
        
        // Set input values
        setInputs(inputs) {
            this.inputs[0] = [...inputs];
            this.activations[0] = [...inputs]; // For input layer, activations = inputs
            
            // Reset all neuron states and other layers' values
            for (let layer = 0; layer < this.layers.length; layer++) {
                this.neuronStates[layer] = Array(this.layers[layer].neurons).fill(INACTIVE);
                
                if (layer > 0) {
                    this.inputs[layer] = Array(this.layers[layer].neurons).fill(0);
                    this.weightedSums[layer] = Array(this.layers[layer].neurons).fill(0);
                    this.activations[layer] = Array(this.layers[layer].neurons).fill(0);
                }
            }
        }
        
        // Compute a single neuron
        computeNeuron(layer, neuron) {
            if (layer === 0) {
                // Input layer neurons are already set directly
                this.neuronStates[layer][neuron] = ACTIVATED;
                return;
            }
            
            // Get inputs from previous layer
            const prevLayerActivations = this.activations[layer - 1];
            
            // Compute weighted sum
            let weightedSum = this.biases[layer - 1][neuron];
            const weights = [];
            const inputs = [];
            
            for (let i = 0; i < this.layers[layer - 1].neurons; i++) {
                const weightIdx = i * this.layers[layer].neurons + neuron;
                const weight = this.weights[layer - 1][weightIdx];
                const input = prevLayerActivations[i];
                
                weights.push(weight);
                inputs.push(input);
                weightedSum += weight * input;
            }
            
            // Store weighted sum
            this.weightedSums[layer][neuron] = weightedSum;
            
            // Apply activation function
            let activation;
            if (this.layers[layer].activation === 'relu') {
                activation = this.relu(weightedSum);
            } else if (this.layers[layer].activation === 'sigmoid') {
                activation = this.sigmoid(weightedSum);
            } else {
                activation = weightedSum; // Linear/no activation
            }
            
            // Store activation
            this.activations[layer][neuron] = activation;
            
            // Store computation details for display
            this.currentComputation = {
                layer,
                neuron,
                inputs,
                weights,
                weightedSum,
                bias: this.biases[layer - 1][neuron],
                activation
            };
            
            // Update neuron state
            this.neuronStates[layer][neuron] = ACTIVATED;
        }
        
        // Reset the network
        reset() {
            // Reset all neuron states
            for (let layer = 0; layer < this.layers.length; layer++) {
                this.neuronStates[layer] = Array(this.layers[layer].neurons).fill(INACTIVE);
                
                if (layer > 0) {
                    this.weightedSums[layer] = Array(this.layers[layer].neurons).fill(0);
                    this.activations[layer] = Array(this.layers[layer].neurons).fill(0);
                }
            }
            
            // Set input layer activations to inputs
            this.activations[0] = [...this.inputs[0]];
        }
    }
    
    // Canvas resize functionality
    function resizeCanvas() {
        const container = canvas.parentElement;
        canvas.width = container.clientWidth;
        canvas.height = container.clientHeight;
        
        // Redraw if already animating
        if (animationState.network) {
            drawNetwork(animationState.network);
        }
    }
    
    // Initialize the visualization
    function initVisualization() {
        if (!canvas) return;
        
        resizeCanvas();
        window.addEventListener('resize', resizeCanvas);
        
        // Create neural network
        animationState.network = new ForwardNetwork();
        
        // Set initial inputs
        if (inputSelector) {
            const selectedInput = inputSelector.value;
            switch(selectedInput) {
                case 'sample1':
                    animationState.network.setInputs([0.8, 0.2, 0.5]);
                    break;
                case 'sample2':
                    animationState.network.setInputs([0.1, 0.9, 0.3]);
                    break;
                case 'sample3':
                    animationState.network.setInputs([0.5, 0.5, 0.5]);
                    break;
                default:
                    animationState.network.setInputs([0.8, 0.2, 0.5]);
            }
        }
        
        // Initialize neuron states for input layer
        animationState.network.neuronStates[0] = Array(animationState.network.layers[0].neurons).fill(ACTIVATED);
        
        // Draw initial state
        drawNetwork(animationState.network);
        
        // Update computation display
        updateComputationDisplay(animationState.network);
        
        // Set button states
        startButton.disabled = false;
        pauseButton.disabled = true;
        resetButton.disabled = true;
    }
    
    // Draw the network
    function drawNetwork(network) {
        if (!ctx) return;
        
        // Clear canvas
        ctx.clearRect(0, 0, canvas.width, canvas.height);
        
        const padding = 50;
        const width = canvas.width - padding * 2;
        const height = canvas.height - padding * 2;
        
        // Calculate neuron positions
        const layers = network.layers;
        const layerPositions = [];
        
        for (let i = 0; i < layers.length; i++) {
            const layerNeurons = [];
            const x = padding + (width / (layers.length - 1)) * i;
            
            for (let j = 0; j < layers[i].neurons; j++) {
                const y = padding + (height / (layers[i].neurons + 1)) * (j + 1);
                layerNeurons.push({ x, y });
            }
            
            layerPositions.push(layerNeurons);
        }
        
        // Draw connections
        for (let layerIdx = 0; layerIdx < layers.length - 1; layerIdx++) {
            for (let i = 0; i < layers[layerIdx].neurons; i++) {
                for (let j = 0; j < layers[layerIdx + 1].neurons; j++) {
                    const weightIdx = i * layers[layerIdx + 1].neurons + j;
                    const weight = network.weights[layerIdx][weightIdx];
                    
                    // Normalize weight for visualization
                    const normalizedWeight = Math.min(Math.abs(weight) * 5, 1);
                    
                    // Check if this connection is highlighted
                    const isHighlighted = animationState.highlightedConnections.some(
                        conn => conn.layer === layerIdx && conn.from === i && conn.to === j
                    );
                    
                    // Set connection color based on state
                    let connectionColor;
                    if (isHighlighted) {
                        connectionColor = `rgba(46, 204, 113, ${normalizedWeight + 0.2})`;
                        ctx.lineWidth = 3;
                    } else if (network.neuronStates[layerIdx][i] === ACTIVATED && 
                              network.neuronStates[layerIdx + 1][j] === ACTIVATED) {
                        connectionColor = `rgba(52, 152, 219, ${normalizedWeight})`;
                        ctx.lineWidth = 2;
                    } else if (network.neuronStates[layerIdx][i] === ACTIVATED) {
                        connectionColor = `rgba(52, 152, 219, ${normalizedWeight * 0.5})`;
                        ctx.lineWidth = 1.5;
                    } else {
                        connectionColor = `rgba(200, 200, 200, ${normalizedWeight * 0.3})`;
                        ctx.lineWidth = 1;
                    }
                    
                    // Draw the connection
                    ctx.beginPath();
                    ctx.moveTo(layerPositions[layerIdx][i].x, layerPositions[layerIdx][i].y);
                    ctx.lineTo(layerPositions[layerIdx + 1][j].x, layerPositions[layerIdx + 1][j].y);
                    ctx.strokeStyle = connectionColor;
                    ctx.stroke();
                }
            }
        }
        
        // Draw neurons
        for (let layerIdx = 0; layerIdx < layers.length; layerIdx++) {
            for (let i = 0; i < layers[layerIdx].neurons; i++) {
                const { x, y } = layerPositions[layerIdx][i];
                
                // Get neuron activation and state
                const activation = network.activations[layerIdx][i];
                const neuronState = network.neuronStates[layerIdx][i];
                
                // Set neuron color based on state and activation
                let neuronColor;
                if (neuronState === COMPUTING) {
                    neuronColor = 'rgba(241, 196, 15, 0.9)'; // Yellow for computing
                } else if (neuronState === ACTIVATED) {
                    neuronColor = `rgba(52, 152, 219, ${Math.min(Math.max(activation, 0.3), 0.9)})`;
                } else {
                    neuronColor = 'rgba(200, 200, 200, 0.5)'; // Grey for inactive
                }
                
                // Draw neuron
                ctx.beginPath();
                ctx.arc(x, y, 20, 0, Math.PI * 2);
                ctx.fillStyle = neuronColor;
                ctx.fill();
                ctx.strokeStyle = '#2980b9';
                ctx.lineWidth = 2;
                ctx.stroke();
                
                // Draw neuron value
                ctx.fillStyle = '#fff';
                ctx.font = '12px Arial';
                ctx.textAlign = 'center';
                ctx.textBaseline = 'middle';
                
                if (layerIdx === 0 || neuronState === ACTIVATED) {
                    // Show activation for activated neurons
                    ctx.fillText(activation.toFixed(2), x, y);
                } else {
                    // Show ? for inactive neurons
                    ctx.fillText('?', x, y);
                }
                
                // Draw layer labels
                if (i === 0) {
                    ctx.fillStyle = '#333';
                    ctx.font = '14px Arial';
                    ctx.textAlign = 'center';
                    ctx.fillText(layers[layerIdx].name, x, y - 40);
                    
                    // Highlight current layer being processed
                    if (layerIdx === animationState.currentLayer) {
                        ctx.beginPath();
                        ctx.arc(x, y - 40, 5, 0, Math.PI * 2);
                        ctx.fillStyle = '#e74c3c';
                        ctx.fill();
                    }
                }
            }
        }
    }
    
    // Update computation display
    function updateComputationDisplay(network) {
        if (!computationValues) return;
        
        const currentLayer = animationState.currentLayer;
        const currentNeuron = animationState.currentNeuron;
        
        // Update current layer text
        if (currentLayerText) {
            currentLayerText.textContent = network.layers[currentLayer].name;
        }
        
        // Update description
        if (forwardDescription) {
            if (currentLayer === 0) {
                forwardDescription.textContent = "Input values are passed directly to the first layer.";
            } else if (currentNeuron === -1) {
                forwardDescription.textContent = `All neurons in the ${network.layers[currentLayer].name} layer compute their activations.`;
            } else {
                const activationType = network.layers[currentLayer].activation;
                forwardDescription.textContent = `Computing neuron ${currentNeuron + 1} in the ${network.layers[currentLayer].name} layer using ${activationType.toUpperCase()} activation.`;
            }
        }
        
        // Update computation values
        if (currentLayer === 0 || currentNeuron === -1) {
            // Show layer summary
            let html = '';
            
            if (currentLayer === 0) {
                html += '<div class="computation-group">Input Layer Values:</div>';
                for (let i = 0; i < network.layers[0].neurons; i++) {
                    html += `<div>Input ${i + 1}: ${network.activations[0][i].toFixed(4)}</div>`;
                }
            } else {
                html += `<div class="computation-group">${network.layers[currentLayer].name} Layer Summary:</div>`;
                for (let i = 0; i < network.layers[currentLayer].neurons; i++) {
                    const z = network.weightedSums[currentLayer][i];
                    const a = network.activations[currentLayer][i];
                    html += `<div>Neuron ${i + 1}: z = ${z.toFixed(4)}, a = ${a.toFixed(4)}</div>`;
                }
            }
            
            computationValues.innerHTML = html;
        } else {
            // Show specific neuron computation
            const comp = network.currentComputation;
            let html = `<div class="computation-group">Computation for ${network.layers[comp.layer].name} Layer, Neuron ${comp.neuron + 1}:</div>`;
            
            // Weighted sum calculation
            html += '<div class="computation-row">Weighted Sum (z) = bias';
            for (let i = 0; i < comp.inputs.length; i++) {
                html += ` + (${comp.weights[i].toFixed(3)} × ${comp.inputs[i].toFixed(3)})`;
            }
            html += `</div>`;
            html += `<div>z = ${comp.bias.toFixed(3)}`;
            for (let i = 0; i < comp.inputs.length; i++) {
                const product = comp.weights[i] * comp.inputs[i];
                html += ` + ${product.toFixed(3)}`;
            }
            html += ` = ${comp.weightedSum.toFixed(4)}</div>`;
            
            // Activation calculation
            const activationType = network.layers[comp.layer].activation;
            html += `<div class="computation-row">Activation (a) = ${activationType}(z)</div>`;
            
            if (activationType === 'relu') {
                html += `<div>a = max(0, ${comp.weightedSum.toFixed(4)}) = ${comp.activation.toFixed(4)}</div>`;
            } else if (activationType === 'sigmoid') {
                html += `<div>a = 1 / (1 + e<sup>-${comp.weightedSum.toFixed(4)}</sup>) = ${comp.activation.toFixed(4)}</div>`;
            }
            
            computationValues.innerHTML = html;
        }
    }
    
    // Animation loop
    function animate(timestamp) {
        if (!animationState.running) return;
        
        // Calculate delta time based on speed
        const deltaTime = timestamp - animationState.lastTimestamp;
        const interval = 2000 / animationState.speed; // Base interval divided by speed
        
        if (deltaTime > interval || animationState.lastTimestamp === 0) {
            animationState.lastTimestamp = timestamp;
            
            const network = animationState.network;
            const currentLayer = animationState.currentLayer;
            const currentNeuron = animationState.currentNeuron;
            
            // Clear highlighted connections
            animationState.highlightedConnections = [];
            
            if (currentLayer === 0) {
                // Move to first neuron of hidden layer
                animationState.currentLayer = 1;
                animationState.currentNeuron = 0;
                
                // Set hidden layer neuron state to computing
                network.neuronStates[1][0] = COMPUTING;
                
                // Highlight connections from input to this neuron
                for (let i = 0; i < network.layers[0].neurons; i++) {
                    animationState.highlightedConnections.push({
                        layer: 0,
                        from: i,
                        to: 0
                    });
                }
            } else {
                if (currentNeuron < network.layers[currentLayer].neurons - 1) {
                    // Compute current neuron
                    network.computeNeuron(currentLayer, currentNeuron);
                    
                    // Move to next neuron in this layer
                    animationState.currentNeuron = currentNeuron + 1;
                    
                    // Set next neuron state to computing
                    network.neuronStates[currentLayer][currentNeuron + 1] = COMPUTING;
                    
                    // Highlight connections from previous layer to next neuron
                    for (let i = 0; i < network.layers[currentLayer - 1].neurons; i++) {
                        animationState.highlightedConnections.push({
                            layer: currentLayer - 1,
                            from: i,
                            to: currentNeuron + 1
                        });
                    }
                } else {
                    // Compute last neuron in current layer
                    network.computeNeuron(currentLayer, currentNeuron);
                    
                    // Check if we've reached the output layer
                    if (currentLayer < network.layers.length - 1) {
                        // Move to first neuron of next layer
                        animationState.currentLayer = currentLayer + 1;
                        animationState.currentNeuron = 0;
                        
                        // Set next layer's first neuron state to computing
                        network.neuronStates[currentLayer + 1][0] = COMPUTING;
                        
                        // Highlight connections from current layer to next layer's first neuron
                        for (let i = 0; i < network.layers[currentLayer].neurons; i++) {
                            animationState.highlightedConnections.push({
                                layer: currentLayer,
                                from: i,
                                to: 0
                            });
                        }
                    } else {
                        // We've finished the entire forward pass
                        // Pause animation and show the complete result
                        pauseAnimation();
                        
                        // Set current layer to output layer with no specific neuron
                        animationState.currentLayer = currentLayer;
                        animationState.currentNeuron = -1;
                    }
                }
            }
            
            // Update visualization
            drawNetwork(network);
            updateComputationDisplay(network);
        }
        
        // Continue animation
        animationState.animationFrameId = requestAnimationFrame(animate);
    }
    
    // Start animation
    function startAnimation() {
        if (!animationState.running) {
            animationState.running = true;
            animationState.lastTimestamp = 0;
            animationState.animationFrameId = requestAnimationFrame(animate);
            
            startButton.disabled = true;
            pauseButton.disabled = false;
            resetButton.disabled = false;
        }
    }
    
    // Pause animation
    function pauseAnimation() {
        if (animationState.running) {
            animationState.running = false;
            if (animationState.animationFrameId) {
                cancelAnimationFrame(animationState.animationFrameId);
            }
            
            startButton.disabled = false;
            pauseButton.disabled = true;
            resetButton.disabled = false;
        }
    }
    
    // Reset animation
    function resetAnimation() {
        pauseAnimation();
        
        // Reset network state
        animationState.network.reset();
        
        // Reset animation state
        animationState.currentLayer = 0;
        animationState.currentNeuron = -1;
        animationState.highlightedConnections = [];
        
        // Mark input layer neurons as activated
        for (let i = 0; i < animationState.network.layers[0].neurons; i++) {
            animationState.network.neuronStates[0][i] = ACTIVATED;
        }
        
        // Update visualization
        drawNetwork(animationState.network);
        updateComputationDisplay(animationState.network);
        
        startButton.disabled = false;
        pauseButton.disabled = true;
        resetButton.disabled = false;
    }
    
    // Handle input selection change
    function handleInputChange() {
        if (!inputSelector || !animationState.network) return;
        
        const selectedInput = inputSelector.value;
        let newInputs;
        
        switch(selectedInput) {
            case 'sample1':
                newInputs = [0.8, 0.2, 0.5];
                break;
            case 'sample2':
                newInputs = [0.1, 0.9, 0.3];
                break;
            case 'sample3':
                newInputs = [0.5, 0.5, 0.5];
                break;
            default:
                newInputs = [0.8, 0.2, 0.5];
        }
        
        // Set new inputs and reset
        animationState.network.setInputs(newInputs);
        resetAnimation();
    }
    
    // Set up event listeners
    function setupEventListeners() {
        if (startButton) {
            startButton.addEventListener('click', startAnimation);
        }
        
        if (pauseButton) {
            pauseButton.addEventListener('click', pauseAnimation);
        }
        
        if (resetButton) {
            resetButton.addEventListener('click', resetAnimation);
        }
        
        if (inputSelector) {
            inputSelector.addEventListener('change', handleInputChange);
        }
        
        // Tab switching event from the main tab controller
        document.addEventListener('tabSwitch', (e) => {
            if (e.detail.tab === 'forward-propagation') {
                // Initialize or reset when switching to this tab
                resetAnimation();
            }
        });
    }
    
    // Initialize the visualization
    initVisualization();
    
    // Set up event listeners
    setupEventListeners();
});