Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -8,23 +8,24 @@ import huggingface_hub
|
|
8 |
huggingface_hub.login(os.getenv('HF_TOKEN_FLUX2'))
|
9 |
# Load default image from assets as an example
|
10 |
default_image = Image.open("assets/1.png")
|
11 |
-
|
12 |
-
|
13 |
-
def generate_image(model_path, image, height, width, prompt, guidance_scale, num_steps, lora_name):
|
14 |
-
# Load the model
|
15 |
-
pipeline = FluxPipeline.from_pretrained(
|
16 |
-
model_path,
|
17 |
torch_dtype=torch.bfloat16,
|
18 |
).to('cuda')
|
19 |
|
|
|
|
|
|
|
|
|
|
|
20 |
# Load and fuse base LoRA weights
|
21 |
-
pipeline.load_lora_weights("nicolaus-huang/PhotoDoodle", weight_name="pretrain.safetensors")
|
22 |
-
pipeline.fuse_lora()
|
23 |
-
pipeline.unload_lora_weights()
|
24 |
|
25 |
# Load selected LoRA effect if not using the pretrained base model
|
26 |
-
|
27 |
-
|
28 |
|
29 |
# Prepare the input image
|
30 |
condition_image = image.resize((height, width)).convert("RGB")
|
@@ -46,7 +47,6 @@ def generate_image(model_path, image, height, width, prompt, guidance_scale, num
|
|
46 |
iface = gr.Interface(
|
47 |
fn=generate_image,
|
48 |
inputs=[
|
49 |
-
gr.Textbox(label="Model Path", value="black-forest-labs/FLUX.1-dev"),
|
50 |
gr.Image(label="Input Image", type="pil", value=default_image),
|
51 |
gr.Slider(label="Height", value=768, minimum=256, maximum=1024, step=64),
|
52 |
gr.Slider(label="Width", value=512, minimum=256, maximum=1024, step=64),
|
|
|
8 |
huggingface_hub.login(os.getenv('HF_TOKEN_FLUX2'))
|
9 |
# Load default image from assets as an example
|
10 |
default_image = Image.open("assets/1.png")
|
11 |
+
pipeline = FluxPipeline.from_pretrained(
|
12 |
+
"black-forest-labs/FLUX.1-dev",
|
|
|
|
|
|
|
|
|
13 |
torch_dtype=torch.bfloat16,
|
14 |
).to('cuda')
|
15 |
|
16 |
+
|
17 |
+
@spaces.GPU()
|
18 |
+
def generate_image(image, height, width, prompt, guidance_scale, num_steps, lora_name):
|
19 |
+
# Load the model
|
20 |
+
|
21 |
# Load and fuse base LoRA weights
|
22 |
+
# pipeline.load_lora_weights("nicolaus-huang/PhotoDoodle", weight_name="pretrain.safetensors")
|
23 |
+
# pipeline.fuse_lora()
|
24 |
+
# pipeline.unload_lora_weights()
|
25 |
|
26 |
# Load selected LoRA effect if not using the pretrained base model
|
27 |
+
pipeline.load_lora_weights("nicolaus-huang/PhotoDoodle", weight_name=f"{lora_name}.safetensors")
|
28 |
+
pipeline.fuse_lora()
|
29 |
|
30 |
# Prepare the input image
|
31 |
condition_image = image.resize((height, width)).convert("RGB")
|
|
|
47 |
iface = gr.Interface(
|
48 |
fn=generate_image,
|
49 |
inputs=[
|
|
|
50 |
gr.Image(label="Input Image", type="pil", value=default_image),
|
51 |
gr.Slider(label="Height", value=768, minimum=256, maximum=1024, step=64),
|
52 |
gr.Slider(label="Width", value=512, minimum=256, maximum=1024, step=64),
|