File size: 6,244 Bytes
7faf2cf
f24a24a
7faf2cf
 
 
 
 
 
f24a24a
 
 
7faf2cf
f24a24a
 
7faf2cf
f24a24a
3f12817
f24a24a
 
 
 
 
 
 
 
 
 
 
 
 
 
7faf2cf
 
 
 
 
 
 
 
f24a24a
7faf2cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f24a24a
 
7faf2cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f24a24a
7faf2cf
 
 
 
f24a24a
 
7faf2cf
f24a24a
7faf2cf
 
 
 
 
 
 
 
03542ad
 
 
 
 
7faf2cf
 
 
 
 
37b1991
7faf2cf
 
 
 
 
 
f24a24a
7faf2cf
 
f24a24a
 
 
 
 
7faf2cf
 
f24a24a
 
7faf2cf
f24a24a
 
7faf2cf
 
 
 
e553ed7
f6136a1
aeb12f0
f6136a1
7faf2cf
 
 
 
 
 
 
 
 
 
f24a24a
7faf2cf
 
 
 
 
f24a24a
 
7faf2cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f12817
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import os
import logging
import gradio as gr
from typing import Iterator

from dialog import get_dialog_box
from gateway import check_server_health, request_generation

# Setup logging
logging.basicConfig(level=logging.INFO)

# CONSTANTS
# Get max new tokens from environment variable, if it is not set, default to 2048
MAX_NEW_TOKENS: int = os.getenv("MAX_NEW_TOKENS", 2048)

# Validate environment variables
CLOUD_GATEWAY_API = os.getenv("API_ENDPOINT")
if not CLOUD_GATEWAY_API:
    raise EnvironmentError("API_ENDPOINT is not set.")

MODEL_NAME: str = os.getenv("MODEL_NAME")
if not MODEL_NAME:
    raise EnvironmentError("MODEL_NAME is not set.")

# Get API Key
API_KEY = os.getenv("API_KEY")
if not API_KEY:  # simple check to validate API Key
    raise Exception("API Key not valid.")

# Create a header, avoid declaring multiple times
HEADER = {"x-api-key": f"{API_KEY}"}


def toggle_ui():
    """
    Function to toggle the visibility of the UI based on the server health
    Returns:
        hide/show main ui/dialog
    """
    health = check_server_health(cloud_gateway_api=CLOUD_GATEWAY_API, header=HEADER)
    if health:
        return gr.update(visible=True), gr.update(
            visible=False
        )  # Show main UI, hide dialog
    else:
        return gr.update(visible=False), gr.update(
            visible=True
        )  # Hide main UI, show dialog


def generate(
    message: str,
    chat_history: list,
    system_prompt: str,
    max_new_tokens: int = 1024,
    temperature: float = 0.6,
    frequency_penalty: float = 0.0,
    presence_penalty: float = 0.0,
) -> Iterator[str]:
    """Send a request to backend, fetch the streaming responses and emit to the UI.

    Args:
        message (str): input message from the user
        chat_history (list[tuple[str, str]]): entire chat history of the session
        system_prompt (str): system prompt
        max_new_tokens (int, optional): maximum number of tokens to generate, ignoring the number of tokens in the
                                        prompt. Defaults to 1024.
        temperature (float, optional): the value used to module the next token probabilities. Defaults to 0.6.
        top_p (float, optional): if set to float<1, only the smallest set of most probable tokens with probabilities
                                    that add up to top_p or higher are kept for generation. Defaults to 0.9.
        top_k (int, optional): the number of highest probability vocabulary tokens to keep for top-k-filtering.
                                Defaults to 50.
        repetition_penalty (float, optional): the parameter for repetition penalty. 1.0 means no penalty.
                                Defaults to 1.2.

    Yields:
        Iterator[str]: Streaming responses to the UI
    """
    # sample method to yield responses from the llm model
    outputs = []
    for text in request_generation(
        header=HEADER,
        message=message,
        system_prompt=system_prompt,
        max_new_tokens=max_new_tokens,
        temperature=temperature,
        presence_penalty=presence_penalty,
        frequency_penalty=frequency_penalty,
        cloud_gateway_api=CLOUD_GATEWAY_API,
        model_name=MODEL_NAME,
    ):
        outputs.append(text)
        yield "".join(outputs)


chat_interface = gr.ChatInterface(
    fn=generate,
    additional_inputs=[
        gr.Textbox(
            label="System prompt",
            value="You are a highly capable AI assistant. Provide accurate, concise, and fact-based responses that are directly relevant to the user's query. Avoid speculation, ensure logical consistency, and maintain clarity in longer outputs. Keep answers well-structured and under 1200 tokens unless explicitly requested otherwise.",
            lines=3,
        ),
        gr.Slider(
            label="Max New Tokens",
            minimum=1,
            maximum=MAX_NEW_TOKENS,
            step=1,
            value=2048,
        ),
        gr.Slider(
            label="Temperature",
            minimum=0.1,
            maximum=4.0,
            step=0.1,
            value=0.3,
        ),
        gr.Slider(
            label="Frequency penalty",
            minimum=-2.0,
            maximum=2.0,
            step=0.1,
            value=0.0,
        ),
        gr.Slider(
            label="Presence penalty",
            minimum=-2.0,
            maximum=2.0,
            step=0.1,
            value=0.0,
        ),
    ],
    stop_btn=None,
    examples=[
        ["Plan a three-day trip to Washington DC for Cherry Blossom Festival."],
        [
            "Compose a short, joyful musical piece for kids celebrating spring sunshine and blossom."
        ],
        ["Can you explain briefly to me what is the Python programming language?"],
        ["Explain the plot of Cinderella in a sentence."],
        ["How many hours does it take a man to eat a Helicopter?"],
        ["Write a 100-word article on 'Benefits of Open-Source in AI research'."],
    ],
    cache_examples=False,
)

with gr.Blocks(css="style.css", fill_height=True) as demo:
    # Get the server status before displaying UI
    visibility = check_server_health(CLOUD_GATEWAY_API, header=HEADER)

    # Container for the main interface
    with gr.Column(visible=visibility, elem_id="main_ui") as main_ui:
        gr.Markdown(
            f"""
            # Gemma 3 27b Instruct
            This Space is an Alpha release that demonstrates [Gemma-3-27B-It](https://huggingface.co/google/gemma-3-27b-it) model running on AMD MI300 infrastructure. The space is built with Google Gemma 3 [License](https://ai.google.dev/gemma/terms). Feel free to play with it!
            """
        )
        chat_interface.render()

    # Dialog box using Markdown for the error message
    with gr.Row(visible=(not visibility), elem_id="dialog_box") as dialog_box:
        # Add spinner and message
        get_dialog_box()

    # Timer to check server health every 5 seconds and update UI
    timer = gr.Timer(value=10)
    timer.tick(fn=toggle_ui, outputs=[main_ui, dialog_box])


if __name__ == "__main__":
    demo.queue(
        max_size=int(os.getenv("QUEUE")),
        default_concurrency_limit=int(os.getenv("CONCURRENCY_LIMIT")),
    ).launch()