# ... (keep existing imports and setup) ... import duckdb import os from fastapi import FastAPI, HTTPException, Request, Path as FastPath, Body from fastapi.responses import FileResponse, StreamingResponse from pydantic import BaseModel, Field from typing import List, Dict, Any, Optional import logging import io import asyncio from contextlib import contextmanager # <--- Add contextlib # --- Configuration --- DATABASE_PATH = os.environ.get("DUCKDB_PATH", "data/mydatabase.db") DATA_DIR = "data" # Ensure data directory exists os.makedirs(DATA_DIR, exist_ok=True) # --- Logging --- logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # --- FastAPI App --- app = FastAPI( title="DuckDB API", description="An API to interact with a DuckDB database.", version="0.1.0" ) # --- Database Connection (using context manager for safety) --- @contextmanager def get_db_context(): conn = None try: # Check if the database file needs initialization initialize = not os.path.exists(DATABASE_PATH) or os.path.getsize(DATABASE_PATH) == 0 conn = duckdb.connect(DATABASE_PATH, read_only=False) # Allow writes for setup if initialize: logger.info(f"Database file not found or empty at {DATABASE_PATH}. Initializing.") # Optionally create a default table if the DB is new # conn.execute("CREATE TABLE IF NOT EXISTS example (id INTEGER, name VARCHAR);") yield conn except duckdb.Error as e: logger.error(f"Database connection error: {e}") raise HTTPException(status_code=500, detail=f"Database connection error: {e}") finally: if conn: conn.close() # --- Pydantic Models --- class ColumnDefinition(BaseModel): name: str type: str class TableSchemaResponse(BaseModel): columns: List[ColumnDefinition] class CreateTableRequest(BaseModel): columns: List[ColumnDefinition] class CreateRowRequest(BaseModel): rows: List[Dict[str, Any]] class UpdateRowRequest(BaseModel): updates: Dict[str, Any] condition: str class DeleteRowRequest(BaseModel): condition: str class SQLQueryRequest(BaseModel): sql: str class ApiResponse(BaseModel): message: str details: Optional[Any] = None # --- Helper Functions --- def safe_identifier(name: str) -> str: """Quotes an identifier safely using DuckDB.""" # Basic check if not name or not isinstance(name, str): raise HTTPException(status_code=400, detail=f"Invalid identifier provided: {name}") # Use DuckDB's quoting mechanism try: # Use a temporary in-memory connection for quoting safely with duckdb.connect(':memory:') as temp_conn: # Use sql() which returns a relation, then fetch the result quoted = temp_conn.sql(f"SELECT '{name}'::IDENTIFIER").fetchone() if quoted: return quoted[0] else: raise HTTPException(status_code=500, detail="Failed to quote identifier") except duckdb.Error as e: logger.error(f"Error quoting identifier '{name}': {e}") # Fallback or re-raise depending on policy, here we raise raise HTTPException(status_code=400, detail=f"Invalid identifier '{name}': {e}") def generate_column_sql(columns: List[ColumnDefinition]) -> str: """Generates the column definition part of a CREATE TABLE statement.""" defs = [] for col in columns: col_name_safe = safe_identifier(col.name) # More robust type validation needed for production allowed_types_prefix = ['INTEGER', 'VARCHAR', 'TEXT', 'BOOLEAN', 'FLOAT', 'DOUBLE', 'DATE', 'TIMESTAMP', 'BLOB', 'BIGINT', 'DECIMAL', 'LIST', 'STRUCT', 'MAP', 'UNION'] type_upper = col.type.strip().upper() is_allowed = False for prefix in allowed_types_prefix: # Allow types like VARCHAR(255), DECIMAL(10,2), LIST, STRUCT etc. if type_upper.startswith(prefix): is_allowed = True break if not is_allowed: # Very basic check, expand as needed raise HTTPException(status_code=400, detail=f"Unsupported or potentially invalid data type: {col.type}") defs.append(f"{col_name_safe} {col.type}") # Pass type string directly return ", ".join(defs) def result_to_dict(cursor_description, rows): """Converts cursor results (description + rows) to a list of dictionaries.""" column_names = [desc[0] for desc in cursor_description] return [dict(zip(column_names, row)) for row in rows] # --- API Endpoints --- @app.get("/", summary="API Root", response_model=ApiResponse) async def read_root(): """Provides a welcome message for the API.""" return {"message": "Welcome to the DuckDB API!"} # --- NEW ENDPOINT --- @app.get("/tables", summary="List Tables", response_model=List[str]) async def list_tables(): """Lists all tables in the default schema.""" try: with get_db_context() as conn: # Show user tables (excluding system tables) tables = conn.execute("SELECT table_name FROM information_schema.tables WHERE table_schema = 'main'").fetchall() return [table[0] for table in tables] except duckdb.Error as e: logger.error(f"Error listing tables: {e}") raise HTTPException(status_code=500, detail=f"Error listing tables: {e}") # --- NEW ENDPOINT --- @app.get("/tables/{table_name}/schema", summary="Get Table Schema", response_model=TableSchemaResponse) async def get_table_schema( table_name: str = FastPath(..., description="Name of the table") ): """Gets the schema (column names and types) for a specific table.""" table_name_safe = safe_identifier(table_name) # Use PRAGMA for schema info sql = f"PRAGMA table_info({table_name_safe});" try: with get_db_context() as conn: result = conn.execute(sql).fetchall() if not result: raise HTTPException(status_code=404, detail=f"Table '{table_name}' not found or has no columns.") # PRAGMA table_info columns: cid, name, type, notnull, dflt_value, pk columns = [ColumnDefinition(name=row[1], type=row[2]) for row in result] return TableSchemaResponse(columns=columns) except duckdb.CatalogException as e: raise HTTPException(status_code=404, detail=f"Table '{table_name}' not found.") except duckdb.Error as e: logger.error(f"Error getting schema for table '{table_name}': {e}") raise HTTPException(status_code=400, detail=f"Error getting table schema: {e}") # --- NEW ENDPOINT --- @app.post("/query", summary="Execute Read-Only SQL Query") async def execute_query(query_request: SQLQueryRequest): """Executes a provided SQL query (read-only enforced).""" sql = query_request.sql.strip() # **Security:** Basic check to prevent modification queries. # This is NOT foolproof. A robust solution needs proper SQL parsing or # database roles/permissions restricting the API user. forbidden_keywords = ['INSERT', 'UPDATE', 'DELETE', 'DROP', 'CREATE', 'ALTER', 'ATTACH', 'DETACH', 'COPY', 'EXPORT', 'IMPORT'] sql_upper = sql.upper() if any(keyword in sql_upper for keyword in forbidden_keywords): raise HTTPException(status_code=403, detail="Only SELECT queries are allowed.") if not sql_upper.startswith('SELECT') and not sql_upper.startswith('WITH'): raise HTTPException(status_code=400, detail="Query must start with SELECT or WITH.") try: logger.info(f"Executing user SQL: {sql}") with get_db_context() as conn: description = conn.execute(sql).description result = conn.fetchall() # Convert rows to dictionaries for JSON serialization data = result_to_dict(description, result) return data except duckdb.Error as e: logger.error(f"Error executing user query: {e}") raise HTTPException(status_code=400, detail=f"Error executing query: {e}") except Exception as e: logger.error(f"Unexpected error executing user query: {e}") raise HTTPException(status_code=500, detail="An unexpected error occurred during query execution.") # --- Existing Endpoints (Keep or adapt as needed) --- @app.post("/tables/{table_name}", summary="Create Table", response_model=ApiResponse, status_code=201) async def create_table( table_name: str = FastPath(..., description="Name of the table to create"), schema: CreateTableRequest = ..., ): """Creates a new table with the specified schema.""" table_name_safe = safe_identifier(table_name) if not schema.columns: raise HTTPException(status_code=400, detail="Table must have at least one column.") try: columns_sql = generate_column_sql(schema.columns) sql = f"CREATE OR REPLACE TABLE {table_name_safe} ({columns_sql});" # Use CREATE OR REPLACE for simplicity logger.info(f"Executing SQL: {sql}") with get_db_context() as conn: conn.execute(sql) return {"message": f"Table '{table_name}' created or replaced successfully."} except HTTPException as e: raise e except duckdb.Error as e: logger.error(f"Error creating table '{table_name}': {e}") raise HTTPException(status_code=400, detail=f"Error creating table: {e}") except Exception as e: logger.error(f"Unexpected error creating table '{table_name}': {e}") raise HTTPException(status_code=500, detail="An unexpected error occurred.") @app.get("/tables/{table_name}", summary="Read Table Data") async def read_table( table_name: str = FastPath(..., description="Name of the table to read from"), limit: Optional[int] = 100, # Default limit offset: Optional[int] = 0 # Default offset ): """Reads and returns rows from a specified table. Supports limit and offset.""" table_name_safe = safe_identifier(table_name) sql = f"SELECT * FROM {table_name_safe}" params = [] if limit is not None and limit >= 0: sql += " LIMIT ?" params.append(limit) if offset is not None and offset >= 0: sql += " OFFSET ?" params.append(offset) sql += ";" try: logger.info(f"Executing SQL: {sql} with params: {params}") with get_db_context() as conn: description = conn.execute(sql, params).description result = conn.fetchall() data = result_to_dict(description, result) return data except duckdb.CatalogException as e: raise HTTPException(status_code=404, detail=f"Table '{table_name}' not found.") except duckdb.Error as e: logger.error(f"Error reading table '{table_name}': {e}") raise HTTPException(status_code=400, detail=f"Error reading table: {e}") except Exception as e: logger.error(f"Unexpected error reading table '{table_name}': {e}") raise HTTPException(status_code=500, detail="An unexpected error occurred.") @app.post("/tables/{table_name}/rows", summary="Create Rows", response_model=ApiResponse, status_code=201) async def create_rows( table_name: str = FastPath(..., description="Name of the table to insert into"), request: CreateRowRequest = ..., ): """Inserts one or more rows into the specified table.""" table_name_safe = safe_identifier(table_name) if not request.rows: raise HTTPException(status_code=400, detail="No rows provided to insert.") # Assume all rows have the same columns based on the first row columns = list(request.rows[0].keys()) columns_safe = [safe_identifier(col) for col in columns] placeholders = ", ".join(["?"] * len(columns)) columns_sql = ", ".join(columns_safe) sql = f"INSERT INTO {table_name_safe} ({columns_sql}) VALUES ({placeholders});" # Convert list of dicts to list of lists/tuples for executemany params_list = [] for row_dict in request.rows: if list(row_dict.keys()) != columns: raise HTTPException(status_code=400, detail="All rows must have the same columns in the same order.") params_list.append(list(row_dict.values())) try: logger.info(f"Executing SQL: {sql} for {len(params_list)} rows") with get_db_context() as conn: conn.executemany(sql, params_list) # Removed commit - context manager handles it return {"message": f"Successfully inserted {len(params_list)} rows into '{table_name}'."} except duckdb.CatalogException as e: raise HTTPException(status_code=404, detail=f"Table '{table_name}' not found.") except duckdb.Error as e: logger.error(f"Error inserting rows into '{table_name}': {e}") raise HTTPException(status_code=400, detail=f"Error inserting rows: {e}") except Exception as e: logger.error(f"Unexpected error inserting rows into '{table_name}': {e}") raise HTTPException(status_code=500, detail="An unexpected error occurred.") @app.put("/tables/{table_name}/rows", summary="Update Rows", response_model=ApiResponse) async def update_rows( table_name: str = FastPath(..., description="Name of the table to update"), request: UpdateRowRequest = ..., ): """Updates rows in the table based on a condition.""" table_name_safe = safe_identifier(table_name) if not request.updates: raise HTTPException(status_code=400, detail="No updates provided.") if not request.condition: raise HTTPException(status_code=400, detail="Update condition (WHERE clause) is required.") set_clauses = [] params = [] for col, value in request.updates.items(): set_clauses.append(f"{safe_identifier(col)} = ?") params.append(value) set_sql = ", ".join(set_clauses) # WARNING: Injecting request.condition directly is a security risk. # Use parameters for values, but condition structure still needs care. sql = f"UPDATE {table_name_safe} SET {set_sql} WHERE {request.condition};" # Condition not parameterized here try: logger.info(f"Executing SQL: {sql} with params: {params}") with get_db_context() as conn: conn.execute(sql, params) # Removed commit return {"message": f"Rows in '{table_name}' updated successfully based on condition."} except duckdb.CatalogException as e: raise HTTPException(status_code=404, detail=f"Table '{table_name}' not found.") except duckdb.Error as e: logger.error(f"Error updating rows in '{table_name}': {e}") raise HTTPException(status_code=400, detail=f"Error updating rows: {e}") except Exception as e: logger.error(f"Unexpected error updating rows in '{table_name}': {e}") raise HTTPException(status_code=500, detail="An unexpected error occurred.") @app.delete("/tables/{table_name}/rows", summary="Delete Rows", response_model=ApiResponse) async def delete_rows( table_name: str = FastPath(..., description="Name of the table to delete from"), request: DeleteRowRequest = ..., ): """Deletes rows from the table based on a condition.""" table_name_safe = safe_identifier(table_name) if not request.condition: raise HTTPException(status_code=400, detail="Delete condition (WHERE clause) is required.") # WARNING: Injecting request.condition directly is a security risk. sql = f"DELETE FROM {table_name_safe} WHERE {request.condition};" # Condition not parameterized here try: logger.info(f"Executing SQL: {sql}") with get_db_context() as conn: conn.execute(sql) # Removed commit return {"message": f"Rows from '{table_name}' deleted successfully based on condition."} except duckdb.CatalogException as e: raise HTTPException(status_code=404, detail=f"Table '{table_name}' not found.") except duckdb.Error as e: logger.error(f"Error deleting rows from '{table_name}': {e}") raise HTTPException(status_code=400, detail=f"Error deleting rows: {e}") except Exception as e: logger.error(f"Unexpected error deleting rows from '{table_name}': {e}") raise HTTPException(status_code=500, detail="An unexpected error occurred.") # --- Download Endpoints --- @app.get("/download/table/{table_name}", summary="Download Table as CSV") async def download_table_csv( table_name: str = FastPath(..., description="Name of the table to download") ): """Downloads the entire content of a table as a CSV file.""" table_name_safe = safe_identifier(table_name) sql = f"COPY (SELECT * FROM {table_name_safe}) TO STDOUT (FORMAT CSV, HEADER)" async def stream_csv_data(): try: # Use pandas for CSV conversion in-memory with get_db_context() as conn: # Check if table exists before fetching conn.execute(f"SELECT 1 FROM {table_name_safe} LIMIT 0") df = conn.execute(f"SELECT * FROM {table_name_safe}").df() all_data_io = io.StringIO() df.to_csv(all_data_io, index=False) all_data_io.seek(0) chunk_size = 8192 while True: chunk = all_data_io.read(chunk_size) if not chunk: break yield chunk.encode('utf-8') # Encode to bytes for streaming response await asyncio.sleep(0) all_data_io.close() except duckdb.CatalogException as e: yield f"Error: Table '{table_name}' not found.".encode('utf-8') logger.error(f"Error downloading table '{table_name}': Table not found.") except duckdb.Error as e: yield f"Error: Could not export table '{table_name}'. {e}".encode('utf-8') logger.error(f"Error downloading table '{table_name}': {e}") except Exception as e: yield f"Error: An unexpected error occurred.".encode('utf-8') logger.error(f"Unexpected error downloading table '{table_name}': {e}") return StreamingResponse( stream_csv_data(), media_type="text/csv", headers={"Content-Disposition": f"attachment; filename={table_name}.csv"}, ) @app.get("/download/database", summary="Download Database File") async def download_database_file(): """Downloads the entire DuckDB database file.""" if not os.path.exists(DATABASE_PATH): raise HTTPException(status_code=404, detail="Database file not found.") logger.warning("Attempting to download database file. Ensure no active writes are occurring.") return FileResponse( path=DATABASE_PATH, filename=os.path.basename(DATABASE_PATH), media_type="application/vnd.duckdb.database" # More specific media type ) # --- Health Check --- @app.get("/health", summary="Health Check", response_model=ApiResponse) async def health_check(): """Checks if the API and database connection are working.""" try: with get_db_context() as conn: conn.execute("SELECT 1") return {"message": "API is healthy and database connection is successful."} except Exception as e: logger.error(f"Health check failed: {e}") raise HTTPException(status_code=503, detail=f"Health check failed: {e}")