File size: 19,360 Bytes
c43b33b f959360 c26b6eb c43b33b 5dc86cf c26b6eb 5dc86cf c43b33b f959360 5dc86cf f959360 5dc86cf f959360 5dc86cf f959360 5dc86cf c26b6eb 5dc86cf c26b6eb c43b33b c26b6eb 5dc86cf c43b33b 5dc86cf c43b33b 5dc86cf f959360 c43b33b 5dc86cf c43b33b 5dc86cf c43b33b 5dc86cf c43b33b 5dc86cf c43b33b 5dc86cf c43b33b 5dc86cf c43b33b 5dc86cf c26b6eb c43b33b 5dc86cf c26b6eb 5dc86cf c43b33b 5dc86cf c26b6eb 5dc86cf c43b33b 5dc86cf c43b33b 5dc86cf c43b33b c26b6eb 5dc86cf c26b6eb 5dc86cf c43b33b 5dc86cf c43b33b 5dc86cf c43b33b 5dc86cf c43b33b 5dc86cf c26b6eb 5dc86cf c43b33b 5dc86cf c26b6eb 5dc86cf c26b6eb 5dc86cf c43b33b 5dc86cf c43b33b 5dc86cf c26b6eb 5dc86cf c43b33b c26b6eb 5dc86cf c43b33b 5dc86cf c43b33b 5dc86cf c26b6eb 5dc86cf c43b33b c26b6eb 5dc86cf c43b33b 5dc86cf c43b33b 5dc86cf c43b33b 5dc86cf c43b33b 5dc86cf c43b33b 5dc86cf c43b33b 5dc86cf c43b33b 5dc86cf c26b6eb 5dc86cf c26b6eb c43b33b 5dc86cf c26b6eb 5dc86cf c43b33b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 |
# ... (keep existing imports and setup) ...
import duckdb
import os
from fastapi import FastAPI, HTTPException, Request, Path as FastPath, Body
from fastapi.responses import FileResponse, StreamingResponse
from pydantic import BaseModel, Field
from typing import List, Dict, Any, Optional
import logging
import io
import asyncio
from contextlib import contextmanager # <--- Add contextlib
# --- Configuration ---
DATABASE_PATH = os.environ.get("DUCKDB_PATH", "data/mydatabase.db")
DATA_DIR = "data"
# Ensure data directory exists
os.makedirs(DATA_DIR, exist_ok=True)
# --- Logging ---
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# --- FastAPI App ---
app = FastAPI(
title="DuckDB API",
description="An API to interact with a DuckDB database.",
version="0.1.0"
)
# --- Database Connection (using context manager for safety) ---
@contextmanager
def get_db_context():
conn = None
try:
# Check if the database file needs initialization
initialize = not os.path.exists(DATABASE_PATH) or os.path.getsize(DATABASE_PATH) == 0
conn = duckdb.connect(DATABASE_PATH, read_only=False) # Allow writes for setup
if initialize:
logger.info(f"Database file not found or empty at {DATABASE_PATH}. Initializing.")
# Optionally create a default table if the DB is new
# conn.execute("CREATE TABLE IF NOT EXISTS example (id INTEGER, name VARCHAR);")
yield conn
except duckdb.Error as e:
logger.error(f"Database connection error: {e}")
raise HTTPException(status_code=500, detail=f"Database connection error: {e}")
finally:
if conn:
conn.close()
# --- Pydantic Models ---
class ColumnDefinition(BaseModel):
name: str
type: str
class TableSchemaResponse(BaseModel):
columns: List[ColumnDefinition]
class CreateTableRequest(BaseModel):
columns: List[ColumnDefinition]
class CreateRowRequest(BaseModel):
rows: List[Dict[str, Any]]
class UpdateRowRequest(BaseModel):
updates: Dict[str, Any]
condition: str
class DeleteRowRequest(BaseModel):
condition: str
class SQLQueryRequest(BaseModel):
sql: str
class ApiResponse(BaseModel):
message: str
details: Optional[Any] = None
# --- Helper Functions ---
def safe_identifier(name: str) -> str:
"""Quotes an identifier safely using DuckDB."""
# Basic check
if not name or not isinstance(name, str):
raise HTTPException(status_code=400, detail=f"Invalid identifier provided: {name}")
# Use DuckDB's quoting mechanism
try:
# Use a temporary in-memory connection for quoting safely
with duckdb.connect(':memory:') as temp_conn:
# Use sql() which returns a relation, then fetch the result
quoted = temp_conn.sql(f"SELECT '{name}'::IDENTIFIER").fetchone()
if quoted:
return quoted[0]
else:
raise HTTPException(status_code=500, detail="Failed to quote identifier")
except duckdb.Error as e:
logger.error(f"Error quoting identifier '{name}': {e}")
# Fallback or re-raise depending on policy, here we raise
raise HTTPException(status_code=400, detail=f"Invalid identifier '{name}': {e}")
def generate_column_sql(columns: List[ColumnDefinition]) -> str:
"""Generates the column definition part of a CREATE TABLE statement."""
defs = []
for col in columns:
col_name_safe = safe_identifier(col.name)
# More robust type validation needed for production
allowed_types_prefix = ['INTEGER', 'VARCHAR', 'TEXT', 'BOOLEAN', 'FLOAT', 'DOUBLE', 'DATE', 'TIMESTAMP', 'BLOB', 'BIGINT', 'DECIMAL', 'LIST', 'STRUCT', 'MAP', 'UNION']
type_upper = col.type.strip().upper()
is_allowed = False
for prefix in allowed_types_prefix:
# Allow types like VARCHAR(255), DECIMAL(10,2), LIST<INT>, STRUCT<a INT> etc.
if type_upper.startswith(prefix):
is_allowed = True
break
if not is_allowed:
# Very basic check, expand as needed
raise HTTPException(status_code=400, detail=f"Unsupported or potentially invalid data type: {col.type}")
defs.append(f"{col_name_safe} {col.type}") # Pass type string directly
return ", ".join(defs)
def result_to_dict(cursor_description, rows):
"""Converts cursor results (description + rows) to a list of dictionaries."""
column_names = [desc[0] for desc in cursor_description]
return [dict(zip(column_names, row)) for row in rows]
# --- API Endpoints ---
@app.get("/", summary="API Root", response_model=ApiResponse)
async def read_root():
"""Provides a welcome message for the API."""
return {"message": "Welcome to the DuckDB API!"}
# --- NEW ENDPOINT ---
@app.get("/tables", summary="List Tables", response_model=List[str])
async def list_tables():
"""Lists all tables in the default schema."""
try:
with get_db_context() as conn:
# Show user tables (excluding system tables)
tables = conn.execute("SELECT table_name FROM information_schema.tables WHERE table_schema = 'main'").fetchall()
return [table[0] for table in tables]
except duckdb.Error as e:
logger.error(f"Error listing tables: {e}")
raise HTTPException(status_code=500, detail=f"Error listing tables: {e}")
# --- NEW ENDPOINT ---
@app.get("/tables/{table_name}/schema", summary="Get Table Schema", response_model=TableSchemaResponse)
async def get_table_schema(
table_name: str = FastPath(..., description="Name of the table")
):
"""Gets the schema (column names and types) for a specific table."""
table_name_safe = safe_identifier(table_name)
# Use PRAGMA for schema info
sql = f"PRAGMA table_info({table_name_safe});"
try:
with get_db_context() as conn:
result = conn.execute(sql).fetchall()
if not result:
raise HTTPException(status_code=404, detail=f"Table '{table_name}' not found or has no columns.")
# PRAGMA table_info columns: cid, name, type, notnull, dflt_value, pk
columns = [ColumnDefinition(name=row[1], type=row[2]) for row in result]
return TableSchemaResponse(columns=columns)
except duckdb.CatalogException as e:
raise HTTPException(status_code=404, detail=f"Table '{table_name}' not found.")
except duckdb.Error as e:
logger.error(f"Error getting schema for table '{table_name}': {e}")
raise HTTPException(status_code=400, detail=f"Error getting table schema: {e}")
# --- NEW ENDPOINT ---
@app.post("/query", summary="Execute Read-Only SQL Query")
async def execute_query(query_request: SQLQueryRequest):
"""Executes a provided SQL query (read-only enforced)."""
sql = query_request.sql.strip()
# **Security:** Basic check to prevent modification queries.
# This is NOT foolproof. A robust solution needs proper SQL parsing or
# database roles/permissions restricting the API user.
forbidden_keywords = ['INSERT', 'UPDATE', 'DELETE', 'DROP', 'CREATE', 'ALTER', 'ATTACH', 'DETACH', 'COPY', 'EXPORT', 'IMPORT']
sql_upper = sql.upper()
if any(keyword in sql_upper for keyword in forbidden_keywords):
raise HTTPException(status_code=403, detail="Only SELECT queries are allowed.")
if not sql_upper.startswith('SELECT') and not sql_upper.startswith('WITH'):
raise HTTPException(status_code=400, detail="Query must start with SELECT or WITH.")
try:
logger.info(f"Executing user SQL: {sql}")
with get_db_context() as conn:
description = conn.execute(sql).description
result = conn.fetchall()
# Convert rows to dictionaries for JSON serialization
data = result_to_dict(description, result)
return data
except duckdb.Error as e:
logger.error(f"Error executing user query: {e}")
raise HTTPException(status_code=400, detail=f"Error executing query: {e}")
except Exception as e:
logger.error(f"Unexpected error executing user query: {e}")
raise HTTPException(status_code=500, detail="An unexpected error occurred during query execution.")
# --- Existing Endpoints (Keep or adapt as needed) ---
@app.post("/tables/{table_name}", summary="Create Table", response_model=ApiResponse, status_code=201)
async def create_table(
table_name: str = FastPath(..., description="Name of the table to create"),
schema: CreateTableRequest = ...,
):
"""Creates a new table with the specified schema."""
table_name_safe = safe_identifier(table_name)
if not schema.columns:
raise HTTPException(status_code=400, detail="Table must have at least one column.")
try:
columns_sql = generate_column_sql(schema.columns)
sql = f"CREATE OR REPLACE TABLE {table_name_safe} ({columns_sql});" # Use CREATE OR REPLACE for simplicity
logger.info(f"Executing SQL: {sql}")
with get_db_context() as conn:
conn.execute(sql)
return {"message": f"Table '{table_name}' created or replaced successfully."}
except HTTPException as e:
raise e
except duckdb.Error as e:
logger.error(f"Error creating table '{table_name}': {e}")
raise HTTPException(status_code=400, detail=f"Error creating table: {e}")
except Exception as e:
logger.error(f"Unexpected error creating table '{table_name}': {e}")
raise HTTPException(status_code=500, detail="An unexpected error occurred.")
@app.get("/tables/{table_name}", summary="Read Table Data")
async def read_table(
table_name: str = FastPath(..., description="Name of the table to read from"),
limit: Optional[int] = 100, # Default limit
offset: Optional[int] = 0 # Default offset
):
"""Reads and returns rows from a specified table. Supports limit and offset."""
table_name_safe = safe_identifier(table_name)
sql = f"SELECT * FROM {table_name_safe}"
params = []
if limit is not None and limit >= 0:
sql += " LIMIT ?"
params.append(limit)
if offset is not None and offset >= 0:
sql += " OFFSET ?"
params.append(offset)
sql += ";"
try:
logger.info(f"Executing SQL: {sql} with params: {params}")
with get_db_context() as conn:
description = conn.execute(sql, params).description
result = conn.fetchall()
data = result_to_dict(description, result)
return data
except duckdb.CatalogException as e:
raise HTTPException(status_code=404, detail=f"Table '{table_name}' not found.")
except duckdb.Error as e:
logger.error(f"Error reading table '{table_name}': {e}")
raise HTTPException(status_code=400, detail=f"Error reading table: {e}")
except Exception as e:
logger.error(f"Unexpected error reading table '{table_name}': {e}")
raise HTTPException(status_code=500, detail="An unexpected error occurred.")
@app.post("/tables/{table_name}/rows", summary="Create Rows", response_model=ApiResponse, status_code=201)
async def create_rows(
table_name: str = FastPath(..., description="Name of the table to insert into"),
request: CreateRowRequest = ...,
):
"""Inserts one or more rows into the specified table."""
table_name_safe = safe_identifier(table_name)
if not request.rows:
raise HTTPException(status_code=400, detail="No rows provided to insert.")
# Assume all rows have the same columns based on the first row
columns = list(request.rows[0].keys())
columns_safe = [safe_identifier(col) for col in columns]
placeholders = ", ".join(["?"] * len(columns))
columns_sql = ", ".join(columns_safe)
sql = f"INSERT INTO {table_name_safe} ({columns_sql}) VALUES ({placeholders});"
# Convert list of dicts to list of lists/tuples for executemany
params_list = []
for row_dict in request.rows:
if list(row_dict.keys()) != columns:
raise HTTPException(status_code=400, detail="All rows must have the same columns in the same order.")
params_list.append(list(row_dict.values()))
try:
logger.info(f"Executing SQL: {sql} for {len(params_list)} rows")
with get_db_context() as conn:
conn.executemany(sql, params_list)
# Removed commit - context manager handles it
return {"message": f"Successfully inserted {len(params_list)} rows into '{table_name}'."}
except duckdb.CatalogException as e:
raise HTTPException(status_code=404, detail=f"Table '{table_name}' not found.")
except duckdb.Error as e:
logger.error(f"Error inserting rows into '{table_name}': {e}")
raise HTTPException(status_code=400, detail=f"Error inserting rows: {e}")
except Exception as e:
logger.error(f"Unexpected error inserting rows into '{table_name}': {e}")
raise HTTPException(status_code=500, detail="An unexpected error occurred.")
@app.put("/tables/{table_name}/rows", summary="Update Rows", response_model=ApiResponse)
async def update_rows(
table_name: str = FastPath(..., description="Name of the table to update"),
request: UpdateRowRequest = ...,
):
"""Updates rows in the table based on a condition."""
table_name_safe = safe_identifier(table_name)
if not request.updates:
raise HTTPException(status_code=400, detail="No updates provided.")
if not request.condition:
raise HTTPException(status_code=400, detail="Update condition (WHERE clause) is required.")
set_clauses = []
params = []
for col, value in request.updates.items():
set_clauses.append(f"{safe_identifier(col)} = ?")
params.append(value)
set_sql = ", ".join(set_clauses)
# WARNING: Injecting request.condition directly is a security risk.
# Use parameters for values, but condition structure still needs care.
sql = f"UPDATE {table_name_safe} SET {set_sql} WHERE {request.condition};" # Condition not parameterized here
try:
logger.info(f"Executing SQL: {sql} with params: {params}")
with get_db_context() as conn:
conn.execute(sql, params)
# Removed commit
return {"message": f"Rows in '{table_name}' updated successfully based on condition."}
except duckdb.CatalogException as e:
raise HTTPException(status_code=404, detail=f"Table '{table_name}' not found.")
except duckdb.Error as e:
logger.error(f"Error updating rows in '{table_name}': {e}")
raise HTTPException(status_code=400, detail=f"Error updating rows: {e}")
except Exception as e:
logger.error(f"Unexpected error updating rows in '{table_name}': {e}")
raise HTTPException(status_code=500, detail="An unexpected error occurred.")
@app.delete("/tables/{table_name}/rows", summary="Delete Rows", response_model=ApiResponse)
async def delete_rows(
table_name: str = FastPath(..., description="Name of the table to delete from"),
request: DeleteRowRequest = ...,
):
"""Deletes rows from the table based on a condition."""
table_name_safe = safe_identifier(table_name)
if not request.condition:
raise HTTPException(status_code=400, detail="Delete condition (WHERE clause) is required.")
# WARNING: Injecting request.condition directly is a security risk.
sql = f"DELETE FROM {table_name_safe} WHERE {request.condition};" # Condition not parameterized here
try:
logger.info(f"Executing SQL: {sql}")
with get_db_context() as conn:
conn.execute(sql)
# Removed commit
return {"message": f"Rows from '{table_name}' deleted successfully based on condition."}
except duckdb.CatalogException as e:
raise HTTPException(status_code=404, detail=f"Table '{table_name}' not found.")
except duckdb.Error as e:
logger.error(f"Error deleting rows from '{table_name}': {e}")
raise HTTPException(status_code=400, detail=f"Error deleting rows: {e}")
except Exception as e:
logger.error(f"Unexpected error deleting rows from '{table_name}': {e}")
raise HTTPException(status_code=500, detail="An unexpected error occurred.")
# --- Download Endpoints ---
@app.get("/download/table/{table_name}", summary="Download Table as CSV")
async def download_table_csv(
table_name: str = FastPath(..., description="Name of the table to download")
):
"""Downloads the entire content of a table as a CSV file."""
table_name_safe = safe_identifier(table_name)
sql = f"COPY (SELECT * FROM {table_name_safe}) TO STDOUT (FORMAT CSV, HEADER)"
async def stream_csv_data():
try:
# Use pandas for CSV conversion in-memory
with get_db_context() as conn:
# Check if table exists before fetching
conn.execute(f"SELECT 1 FROM {table_name_safe} LIMIT 0")
df = conn.execute(f"SELECT * FROM {table_name_safe}").df()
all_data_io = io.StringIO()
df.to_csv(all_data_io, index=False)
all_data_io.seek(0)
chunk_size = 8192
while True:
chunk = all_data_io.read(chunk_size)
if not chunk:
break
yield chunk.encode('utf-8') # Encode to bytes for streaming response
await asyncio.sleep(0)
all_data_io.close()
except duckdb.CatalogException as e:
yield f"Error: Table '{table_name}' not found.".encode('utf-8')
logger.error(f"Error downloading table '{table_name}': Table not found.")
except duckdb.Error as e:
yield f"Error: Could not export table '{table_name}'. {e}".encode('utf-8')
logger.error(f"Error downloading table '{table_name}': {e}")
except Exception as e:
yield f"Error: An unexpected error occurred.".encode('utf-8')
logger.error(f"Unexpected error downloading table '{table_name}': {e}")
return StreamingResponse(
stream_csv_data(),
media_type="text/csv",
headers={"Content-Disposition": f"attachment; filename={table_name}.csv"},
)
@app.get("/download/database", summary="Download Database File")
async def download_database_file():
"""Downloads the entire DuckDB database file."""
if not os.path.exists(DATABASE_PATH):
raise HTTPException(status_code=404, detail="Database file not found.")
logger.warning("Attempting to download database file. Ensure no active writes are occurring.")
return FileResponse(
path=DATABASE_PATH,
filename=os.path.basename(DATABASE_PATH),
media_type="application/vnd.duckdb.database" # More specific media type
)
# --- Health Check ---
@app.get("/health", summary="Health Check", response_model=ApiResponse)
async def health_check():
"""Checks if the API and database connection are working."""
try:
with get_db_context() as conn:
conn.execute("SELECT 1")
return {"message": "API is healthy and database connection is successful."}
except Exception as e:
logger.error(f"Health check failed: {e}")
raise HTTPException(status_code=503, detail=f"Health check failed: {e}") |