Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,16 @@
|
|
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
|
|
|
|
3 |
from datasets import load_dataset
|
4 |
from sentence_transformers import SentenceTransformer
|
5 |
-
import faiss
|
6 |
-
import numpy as np
|
7 |
from groq import Groq
|
8 |
|
|
|
|
|
|
|
|
|
9 |
# Load dataset
|
10 |
@st.cache_data
|
11 |
def load_data():
|
@@ -13,26 +18,51 @@ def load_data():
|
|
13 |
df = pd.DataFrame(dataset)
|
14 |
return df[["question", "answer"]]
|
15 |
|
16 |
-
#
|
17 |
@st.cache_resource
|
18 |
def setup_faiss(data):
|
19 |
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
# Retrieve relevant context
|
26 |
-
def retrieve_context(query, model, index, data, top_k=1):
|
27 |
query_vec = model.encode([query])
|
28 |
distances, indices = index.search(np.array(query_vec), top_k)
|
29 |
-
results = [
|
30 |
return "\n\n".join(results)
|
31 |
|
32 |
# Call Groq LLM
|
33 |
def query_groq(context, query):
|
34 |
prompt = f"Context:\n{context}\n\nQuestion: {query}\n\nAnswer:"
|
35 |
-
#client = Groq(api_key=st.secrets[GROQ_API_KEY])
|
36 |
client = Groq(api_key=GROQ_API_KEY)
|
37 |
response = client.chat.completions.create(
|
38 |
messages=[{"role": "user", "content": prompt}],
|
@@ -41,11 +71,12 @@ def query_groq(context, query):
|
|
41 |
return response.choices[0].message.content
|
42 |
|
43 |
# Streamlit UI
|
44 |
-
st.set_page_config(page_title="RAG
|
45 |
-
st.title("
|
46 |
|
|
|
47 |
data = load_data()
|
48 |
-
model, index,
|
49 |
|
50 |
st.markdown("Ask a question based on the QA knowledge base.")
|
51 |
|
@@ -61,12 +92,13 @@ optional_queries = [
|
|
61 |
query = st.text_input("Enter your question:", value=optional_queries[0])
|
62 |
if st.button("Ask"):
|
63 |
with st.spinner("Retrieving and generating response..."):
|
64 |
-
context = retrieve_context(query, model, index, data)
|
65 |
answer = query_groq(context, query)
|
66 |
st.subheader("π Retrieved Context")
|
67 |
st.write(context)
|
68 |
st.subheader("π¬ Answer from Groq LLM")
|
69 |
st.write(answer)
|
70 |
|
71 |
-
st.markdown("### Optional Queries to Try:")
|
72 |
-
|
|
|
|
1 |
+
import os
|
2 |
import streamlit as st
|
3 |
import pandas as pd
|
4 |
+
import numpy as np
|
5 |
+
import faiss
|
6 |
from datasets import load_dataset
|
7 |
from sentence_transformers import SentenceTransformer
|
|
|
|
|
8 |
from groq import Groq
|
9 |
|
10 |
+
# Constants for saving/loading index
|
11 |
+
INDEX_FILE = "faiss_index.index"
|
12 |
+
QUESTIONS_FILE = "questions.npy"
|
13 |
+
|
14 |
# Load dataset
|
15 |
@st.cache_data
|
16 |
def load_data():
|
|
|
18 |
df = pd.DataFrame(dataset)
|
19 |
return df[["question", "answer"]]
|
20 |
|
21 |
+
# Build or load FAISS index
|
22 |
@st.cache_resource
|
23 |
def setup_faiss(data):
|
24 |
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
25 |
+
|
26 |
+
if os.path.exists(INDEX_FILE) and os.path.exists(QUESTIONS_FILE):
|
27 |
+
st.info("π Loading FAISS index from disk...")
|
28 |
+
index = faiss.read_index(INDEX_FILE)
|
29 |
+
questions = np.load(QUESTIONS_FILE, allow_pickle=True)
|
30 |
+
else:
|
31 |
+
st.info("βοΈ FAISS index not found. Building new index...")
|
32 |
+
|
33 |
+
questions = data["question"].tolist()
|
34 |
+
embeddings = []
|
35 |
+
progress_bar = st.progress(0, text="Embedding questions...")
|
36 |
+
total = len(questions)
|
37 |
+
|
38 |
+
for i, chunk in enumerate(np.array_split(questions, 10)):
|
39 |
+
emb = model.encode(chunk)
|
40 |
+
embeddings.extend(emb)
|
41 |
+
progress_bar.progress((i + 1) / 10, text=f"Embedding... {int((i + 1) * 10)}%")
|
42 |
+
|
43 |
+
embeddings = np.array(embeddings)
|
44 |
+
index = faiss.IndexFlatL2(embeddings.shape[1])
|
45 |
+
index.add(embeddings)
|
46 |
+
|
47 |
+
faiss.write_index(index, INDEX_FILE)
|
48 |
+
np.save(QUESTIONS_FILE, np.array(questions, dtype=object))
|
49 |
+
|
50 |
+
progress_bar.empty()
|
51 |
+
st.success("β
FAISS index built and saved!")
|
52 |
+
|
53 |
+
return model, index, questions
|
54 |
+
|
55 |
|
56 |
# Retrieve relevant context
|
57 |
+
def retrieve_context(query, model, index, questions, data, top_k=1):
|
58 |
query_vec = model.encode([query])
|
59 |
distances, indices = index.search(np.array(query_vec), top_k)
|
60 |
+
results = [questions[i] + "\n\n" + data.iloc[i]["answer"] for i in indices[0]]
|
61 |
return "\n\n".join(results)
|
62 |
|
63 |
# Call Groq LLM
|
64 |
def query_groq(context, query):
|
65 |
prompt = f"Context:\n{context}\n\nQuestion: {query}\n\nAnswer:"
|
|
|
66 |
client = Groq(api_key=GROQ_API_KEY)
|
67 |
response = client.chat.completions.create(
|
68 |
messages=[{"role": "user", "content": prompt}],
|
|
|
71 |
return response.choices[0].message.content
|
72 |
|
73 |
# Streamlit UI
|
74 |
+
st.set_page_config(page_title="RAG App with Groq", layout="wide")
|
75 |
+
st.title("π RAG App using Groq API + RAG-Instruct Dataset")
|
76 |
|
77 |
+
# Load data and setup
|
78 |
data = load_data()
|
79 |
+
model, index, questions = setup_faiss(data)
|
80 |
|
81 |
st.markdown("Ask a question based on the QA knowledge base.")
|
82 |
|
|
|
92 |
query = st.text_input("Enter your question:", value=optional_queries[0])
|
93 |
if st.button("Ask"):
|
94 |
with st.spinner("Retrieving and generating response..."):
|
95 |
+
context = retrieve_context(query, model, index, questions, data)
|
96 |
answer = query_groq(context, query)
|
97 |
st.subheader("π Retrieved Context")
|
98 |
st.write(context)
|
99 |
st.subheader("π¬ Answer from Groq LLM")
|
100 |
st.write(answer)
|
101 |
|
102 |
+
st.markdown("### π‘ Optional Queries to Try:")
|
103 |
+
for q in optional_queries:
|
104 |
+
st.markdown(f"- {q}")
|