Spaces:
Runtime error
Runtime error
File size: 13,095 Bytes
1cdc47e 4e2aa43 1cdc47e 82d4b57 1cdc47e 82d4b57 1cdc47e 82d4b57 1cdc47e 82d4b57 1cdc47e 82d4b57 1cdc47e 4e2aa43 1cdc47e 82d4b57 1cdc47e 82d4b57 1cdc47e 82d4b57 1cdc47e 82d4b57 1cdc47e 82d4b57 1cdc47e 82d4b57 1cdc47e 82d4b57 4e2aa43 82d4b57 4e2aa43 82d4b57 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
import os
import numpy as np
from scipy.spatial.transform import Rotation
from collections import deque
import sys
import argparse
# Custom print function to show only progress
def log_progress(message):
if message.startswith("PROGRESS:"):
print(message)
def parse_obj(filename):
vertices = []
lines = []
try:
with open(filename, 'r') as f:
for line in f:
if line.startswith('v '):
parts = line.split()
vertices.append([float(parts[1]), float(parts[2]), float(parts[3])])
elif line.startswith('l '):
parts = line.split()
lines.append([int(parts[1]) - 1, int(parts[2]) - 1])
return np.array(vertices), lines
except Exception as e:
raise ValueError(f"Error parsing OBJ file {filename}: {str(e)}")
def build_hierarchy(lines, root=0):
num_joints = max(max(line) for line in lines) + 1
adj = [[] for _ in range(num_joints)]
for a, b in lines:
adj[a].append(b)
adj[b].append(a)
parent = [-1] * num_joints
queue = deque([root])
visited = [False] * num_joints
visited[root] = True
while queue:
p = queue.popleft()
for c in adj[p]:
if not visited[c]:
parent[c] = p
queue.append(c)
visited[c] = True
if not all(visited):
raise ValueError("The skeleton has disconnected components.")
children = [[] for _ in range(num_joints)]
for c in range(num_joints):
if parent[c] != -1:
children[parent[c]].append(c)
return parent, children
def compute_offsets(vertices_ref, parent):
num_joints = len(vertices_ref)
scale_factor = 0.05
offsets = np.zeros((num_joints, 3))
for j in range(num_joints):
if parent[j] != -1:
offsets[j] = (vertices_ref[j] - vertices_ref[parent[j]])*scale_factor
return offsets
def compute_R_world(joint, vertices_ref, vertices_cur, children):
if not children[joint]:
return np.eye(3)
elif len(children[joint]) == 1:
c = children[joint][0]
V_ref = vertices_ref[c] - vertices_ref[joint]
V_cur = vertices_cur[c] - vertices_cur[joint]
norm_ref = np.linalg.norm(V_ref)
norm_cur = np.linalg.norm(V_cur)
if norm_ref < 1e-6 or norm_cur < 1e-6:
return np.eye(3)
V_ref_norm = V_ref / norm_ref
V_cur_norm = V_cur / norm_cur
cos_theta = np.clip(np.dot(V_ref_norm, V_cur_norm), -1.0, 1.0)
if cos_theta > 0.99999:
return np.eye(3)
axis = np.cross(V_ref_norm, V_cur_norm)
axis_norm = np.linalg.norm(axis)
if axis_norm < 1e-6:
return np.eye(3)
axis = axis / axis_norm
angle = np.arccos(cos_theta)
return Rotation.from_rotvec(axis * angle).as_matrix()
else:
A = np.column_stack([vertices_ref[c] - vertices_ref[joint] for c in children[joint]])
B = np.column_stack([vertices_cur[c] - vertices_cur[joint] for c in children[joint]])
M = B @ A.T
U, _, Vh = np.linalg.svd(M)
R = U @ Vh
if np.linalg.det(R) < 0:
Vh[-1, :] *= -1
R = U @ Vh
return R
def calculate_motion_velocity(rotations):
n_frames = len(rotations)
if n_frames <= 1:
return np.zeros(n_frames)
velocities = np.zeros(n_frames)
for i in range(1, n_frames):
prev_quat = rotations[i-1].as_quat()
curr_quat = rotations[i].as_quat()
if np.dot(prev_quat, curr_quat) < 0:
curr_quat = -curr_quat
diff = Rotation.from_quat(prev_quat).inv() * Rotation.from_quat(curr_quat)
velocities[i] = np.linalg.norm(diff.as_rotvec())
if n_frames > 1:
velocities[0] = velocities[1]
return velocities
def adaptive_smooth_rotations(rotations, window_size=7, velocity_threshold=0.03):
n_frames = len(rotations)
if n_frames <= 1:
return rotations
velocities = calculate_motion_velocity(rotations)
if np.max(velocities) > 0:
velocities = velocities / np.max(velocities)
smoothed = []
half_window = window_size // 2
for i in range(n_frames):
start_idx = max(0, i - half_window)
end_idx = min(n_frames - 1, i + half_window)
window_rots = rotations[start_idx:end_idx + 1]
velocity_factor = min(1.0, velocities[i] / velocity_threshold)
sigma = 0.5 + 1.5 * velocity_factor
dist = np.linspace(-1, 1, len(window_rots))
weights = np.exp(-sigma * np.square(dist))
weights = weights / np.sum(weights)
quats = [r.as_quat() for r in window_rots]
for j in range(1, len(quats)):
if np.dot(quats[0], quats[j]) < 0:
quats[j] = -quats[j]
result_quat = np.zeros(4)
for j in range(len(quats)):
result_quat += weights[j] * quats[j]
result_quat = result_quat / np.linalg.norm(result_quat)
smoothed.append(Rotation.from_quat(result_quat))
return smoothed
def adaptive_smooth_positions(positions, window_size=7, velocity_threshold=0.03):
n_frames = len(positions)
if n_frames <= 1:
return positions
positions = np.array(positions)
smoothed = np.zeros_like(positions)
half_window = window_size // 2
velocities = np.zeros(n_frames)
for i in range(1, n_frames):
velocities[i] = np.linalg.norm(positions[i] - positions[i-1])
velocities[0] = velocities[1]
if np.max(velocities) > 0:
velocities = velocities / np.max(velocities)
for i in range(n_frames):
start_idx = max(0, i - half_window)
end_idx = min(n_frames - 1, i + half_window)
window_pos = positions[start_idx:end_idx + 1]
velocity_factor = min(1.0, velocities[i] / velocity_threshold)
sigma = 0.5 + 1.5 * velocity_factor
dist = np.linspace(-1, 1, len(window_pos))
weights = np.exp(-sigma * np.square(dist))
weights = weights / np.sum(weights)
smoothed[i] = np.sum(window_pos * weights[:, np.newaxis], axis=0)
return smoothed
def detect_arm_joints(children, num_joints):
return [j for j in range(num_joints) if len(children[j]) == 1]
def main(output_dir, smoothing_window=8, velocity_threshold=0.04, joint_constraint=True):
folder = os.path.join(output_dir, 'obj_sequence')
try:
obj_files = sorted([f for f in os.listdir(folder) if f.endswith('.obj')])
except Exception as e:
sys.exit(f"Error accessing folder {folder}: {e}")
if not obj_files:
sys.exit("No OBJ files found.")
vertices_ref, lines = parse_obj(os.path.join(folder, obj_files[0]))
num_joints = len(vertices_ref)
parent, children = build_hierarchy(lines)
offsets = compute_offsets(vertices_ref, parent)
root = 0
hierarchy_order = []
def dfs(joint):
hierarchy_order.append(joint)
for child in children[joint]:
dfs(child)
dfs(root)
arm_joints = detect_arm_joints(children, num_joints)
all_root_positions = []
all_positions = [[] for _ in range(num_joints)]
all_rotations = [[] for _ in range(num_joints)]
total_files = len(obj_files)
for i in range(total_files):
obj_file = obj_files[i]
vertices_cur = parse_obj(os.path.join(folder, obj_file))[0]
R_world = [compute_R_world(j, vertices_ref, vertices_cur, children) for j in range(num_joints)]
R_local = [R_world[j] if parent[j] == -1 else R_world[parent[j]].T @ R_world[j] for j in range(num_joints)]
rotations = [Rotation.from_matrix(R) for R in R_local]
all_root_positions.append(vertices_cur[root])
for j in range(num_joints):
all_positions[j].append(vertices_cur[j])
all_rotations[j].append(rotations[j])
# First half of progress (0-50%)
progress = (i / total_files) * 50
log_progress(f"PROGRESS:{progress:.2f}")
smoothed_root_positions = adaptive_smooth_positions(all_root_positions, smoothing_window, velocity_threshold)
smoothed_positions = [adaptive_smooth_positions(np.array(pos), smoothing_window, velocity_threshold) for pos in all_positions]
smoothed_rotations = [adaptive_smooth_rotations(rot, smoothing_window, velocity_threshold) for rot in all_rotations]
# Enforce bone lengths (no lengthening restraint)
for i in range(total_files):
# Start with root position
smoothed_positions[root][i] = smoothed_root_positions[i]
# Adjust each child joint to maintain bone length
for j in range(num_joints):
if parent[j] != -1: # Skip root
parent_pos = smoothed_positions[parent[j]][i]
child_pos = smoothed_positions[j][i]
ref_offset = offsets[j] # Reference bone length vector
bone_length = np.linalg.norm(ref_offset)
if bone_length < 1e-6:
continue # Skip if bone length is near zero
current_vec = child_pos - parent_pos
current_length = np.linalg.norm(current_vec)
if current_length < 1e-6:
# If current length is near zero, use reference direction
smoothed_positions[j][i] = parent_pos + ref_offset
else:
# Scale the current vector to match reference bone length
corrected_vec = (current_vec / current_length) * bone_length
smoothed_positions[j][i] = parent_pos + corrected_vec
motion_data = []
joints_to_remove = {10, 13, 16, 6, 3}
for i in range(total_files):
root_pos = smoothed_root_positions[i]
if joint_constraint:
for j in range(num_joints):
euler = smoothed_rotations[j][i].as_euler('ZYX', degrees=True)
if j in arm_joints:
euler = np.clip(euler, -180, 180)
else:
euler = np.clip(euler, -150, 150)
smoothed_rotations[j][i] = Rotation.from_euler('ZYX', euler, degrees=True)
euler_angles = [smoothed_rotations[j][i].as_euler('ZYX', degrees=True) for j in range(num_joints)]
motion_line = list(root_pos) + list(euler_angles[root])
for j in hierarchy_order[1:]:
motion_line.extend(euler_angles[j])
motion_data.append(motion_line)
# Second half of progress (50-100%)
progress = 50 + (i / total_files) * 50
log_progress(f"PROGRESS:{progress:.2f}")
bvh_dir = os.path.join(output_dir, 'bvh')
os.makedirs(bvh_dir, exist_ok=True)
bvh_file = os.path.join(bvh_dir, 'output.bvh')
with open(bvh_file, 'w') as f:
f.write("HIERARCHY\n")
def write_hierarchy(joint, parent, f, indent=0):
if parent == -1:
f.write("ROOT Joint{}\n".format(joint))
else:
f.write(" " * indent + "JOINT Joint{}\n".format(joint))
f.write(" " * indent + "{\n")
f.write(" " * (indent + 1) + "OFFSET {:.6f} {:.6f} {:.6f}\n".format(*offsets[joint]))
if parent == -1:
f.write(" " * (indent + 1) + "CHANNELS 6 Xposition Yposition Zposition Zrotation Yrotation Xrotation\n")
else:
f.write(" " * (indent + 1) + "CHANNELS 3 Zrotation Yrotation Xrotation\n")
for child in children[joint]:
write_hierarchy(child, joint, f, indent + 1)
if not children[joint]:
f.write(" " * (indent + 1) + "End Site\n")
f.write(" " * (indent + 1) + "{\n")
f.write(" " * (indent + 2) + "OFFSET 0.000000 0.000000 0.000000\n")
f.write(" " * (indent + 1) + "}\n")
f.write(" " * indent + "}\n")
write_hierarchy(root, -1, f)
f.write("MOTION\n")
f.write("Frames: {}\n".format(len(motion_data)))
f.write("Frame Time: 0.033333\n")
for motion_line in motion_data:
f.write(" ".join("{:.6f}".format(x) for x in motion_line) + "\n")
if __name__ == "__main__":
parser = argparse.ArgumentParser('Convert OBJ sequence to BVH with improved adaptive smoothing.')
parser.add_argument('--output-dir', type=str, default='../outputs/', help='Output directory containing obj_sequence')
parser.add_argument('--smoothing-window', type=int, default=7, help='Size of smoothing window')
parser.add_argument('--velocity-threshold', type=float, default=0.03, help='Velocity threshold for adaptive smoothing')
parser.add_argument('--disable-joint-constraints', action='store_false', dest='joint_constraint',
help='Disable joint constraints that prevent extreme rotations')
args = parser.parse_args()
main(args.output_dir, args.smoothing_window, args.velocity_threshold, args.joint_constraint) |