File size: 11,448 Bytes
1cdc47e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import torch
from torchsummary import summary
import torch.nn as nn
from model.local_attention import LocalGraph
from model.global_attention import MultiGlobalGraph, SingleGlobalGraph


class GraphAttentionBlock(nn.Module):
    def __init__(self, adj, input_dim, output_dim, p_dropout):
        super(GraphAttentionBlock, self).__init__()
        
        hid_dim = output_dim
        self.relu = nn.ReLU(inplace=True)

        self.local_graph_layer = LocalGraph(adj, input_dim, hid_dim, p_dropout)
        self.global_graph_layer = MultiGlobalGraph(adj, input_dim, input_dim//4, dropout=p_dropout)
        # self.global_graph_layer = SingleGlobalGraph(adj, input_dim, output_dim)

        self.cat_conv = nn.Conv2d(3*output_dim, 2*output_dim, 1, bias=False)
        self.cat_bn = nn.BatchNorm2d(2*output_dim, momentum=0.1)

    def forward(self, x):
        # x: (B, C, T, N) --> (B, T, N, C)
        x = x.permute(0, 2, 3, 1)
        residual = x
        x_ = self.local_graph_layer(x)
        y_ = self.global_graph_layer(x)
        x = torch.cat((residual, x_, y_), dim=-1)

        # x: (B, T, N, C) --> (B, C, T, N)
        x = x.permute(0, 3, 1, 2)
        x = self.relu(self.cat_bn(self.cat_conv(x)))
        return x


class SpatioTemporalModelBase(nn.Module):
    """
    Do not instantiate this class.
    """

    def __init__(self, adj, num_joints_in, in_features, num_joints_out,
                 filter_widths, causal, dropout, channels):
        super().__init__()

        # Validate input
        for fw in filter_widths:
            assert fw % 2 != 0, 'Only odd filter widths are supported'

        self.num_joints_in = num_joints_in
        self.in_features = in_features
        self.num_joints_out = num_joints_out
        self.filter_widths = filter_widths

        self.drop = nn.Dropout(dropout)
        self.relu = nn.ReLU(inplace=True)

        self.pad = [filter_widths[0] // 2]
        self.init_bn = nn.BatchNorm2d(in_features, momentum=0.1)
        self.expand_bn = nn.BatchNorm2d(channels, momentum=0.1)
        self.shrink = nn.Conv2d(2**len(self.filter_widths)*channels, 3, 1, bias=False)

    def receptive_field(self):
        """
        Return the total receptive field of this model as # of frames.
        """
        frames = 0
        for f in self.pad:
            frames += f
        return 1 + 2 * frames

    def total_causal_shift(self):
        """
        Return the asymmetric offset for sequence padding.
        The returned value is typically 0 if causal convolutions are disabled,
        otherwise it is half the receptive field.
        """
        frames = self.causal_shift[0]
        next_dilation = self.filter_widths[0]
        for i in range(1, len(self.filter_widths)):
            frames += self.causal_shift[i] * next_dilation
            next_dilation *= self.filter_widths[i]
        return frames

    def forward(self, x):
        """
        X: (B, C, T, N)
            B: batchsize
            T: Temporal
            N: The number of keypoints
            C: The feature dimension of keypoints
        """

        assert len(x.shape) == 4
        assert x.shape[-2] == self.num_joints_in
        assert x.shape[-1] == self.in_features

        # X: (B, T, N, C)
        x = self._forward_blocks(x)
        x = self.shrink(x)

        # x: (B, C, T, N) --> (B, T, N, C)
        x = x.permute(0, 2, 3, 1)

        return x


class SpatioTemporalModel(SpatioTemporalModelBase):
    """
    Reference 3D pose estimation model with temporal convolutions.
    This implementation can be used for all use-cases.
    """

    def __init__(self, adj, num_joints_in, in_features, num_joints_out,
                 filter_widths, causal=False, dropout=0.25, channels=64, dense=False):
        """
        Initialize this model.

        Arguments:
        num_joints_in -- number of input joints (e.g. 17 for Human3.6M)
        in_features -- number of input features for each joint (typically 2 for 2D input)
        num_joints_out -- number of output joints (can be different than input)
        filter_widths -- list of convolution widths, which also determines the # of blocks and receptive field
        causal -- use causal convolutions instead of symmetric convolutions (for real-time applications)
        dropout -- dropout probability
        channels -- number of convolution channels
        dense -- use regular dense convolutions instead of dilated convolutions (ablation experiment)
        """
        super().__init__(adj, num_joints_in, in_features, num_joints_out, filter_widths, causal, dropout, channels)

        self.expand_conv = nn.Conv2d(in_features, channels, (filter_widths[0], 1), bias=False)
        nn.init.kaiming_normal_(self.expand_conv.weight)

        layers_conv = []
        layers_graph_conv = []
        layers_bn = []

        layers_graph_conv.append(GraphAttentionBlock(adj, channels, channels, p_dropout=dropout))

        self.causal_shift = [(filter_widths[0]) // 2 if causal else 0]
        next_dilation = filter_widths[0]
        for i in range(1, len(filter_widths)):
            self.pad.append((filter_widths[i] - 1) * next_dilation // 2)
            self.causal_shift.append((filter_widths[i] // 2 * next_dilation) if causal else 0)

            layers_conv.append(nn.Conv2d(2**i*channels, 2**i*channels, (filter_widths[i], 1) if not dense else (2*self.pad[-1]+1, 1),
                               dilation=(next_dilation, 1) if not dense else (1, 1), bias=False))
            layers_bn.append(nn.BatchNorm2d(2**i*channels, momentum=0.1))
            layers_conv.append(nn.Conv2d(2**i*channels, 2**i*channels, 1, dilation=1, bias=False))
            layers_bn.append(nn.BatchNorm2d(2**i*channels, momentum=0.1))

            layers_graph_conv.append(GraphAttentionBlock(adj, 2**i*channels, 2**i*channels, p_dropout=dropout))

            next_dilation *= filter_widths[i]

        self.layers_conv = nn.ModuleList(layers_conv)
        self.layers_bn = nn.ModuleList(layers_bn)
        self.layers_graph_conv = nn.ModuleList(layers_graph_conv)

    def _forward_blocks(self, x):

        # x: (B, T, N, C) --> (B, C, T, N)
        x = x.permute(0, 3, 1, 2)
        x = self.init_bn(x)
        x = self.relu(self.expand_bn(self.expand_conv(x)))
        x = self.layers_graph_conv[0](x)

        for i in range(len(self.pad) - 1):
            pad = self.pad[i + 1]
            shift = self.causal_shift[i + 1]
            res = x[:, :, pad + shift: x.shape[2] - pad + shift]

            # x: (B, C, T, N)
            x = self.relu(self.layers_bn[2 * i](self.layers_conv[2 * i](x)))
            x = res + self.drop(self.relu(self.layers_bn[2 * i + 1](self.layers_conv[2 * i + 1](x))))

            x = self.layers_graph_conv[i + 1](x)
        return x


class SpatioTemporalModelOptimized1f(SpatioTemporalModelBase):
    """
    3D pose estimation model optimized for single-frame batching, i.e.
    where batches have input length = receptive field, and output length = 1.
    This scenario is only used for training when stride == 1.

    This implementation replaces dilated convolutions with strided convolutions
    to avoid generating unused intermediate results. The weights are interchangeable
    with the reference implementation.
    """

    def __init__(self, adj, num_joints_in, in_features, num_joints_out,
                 filter_widths, causal=False, dropout=0.25, channels=64):
        """
        Initialize this model.

        Arguments:
        num_joints_in -- number of input joints (e.g. 17 for Human3.6M)
        in_features -- number of input features for each joint (typically 2 for 2D input)
        num_joints_out -- number of output joints (can be different than input)
        filter_widths -- list of convolution widths, which also determines the # of blocks and receptive field
        causal -- use causal convolutions instead of symmetric convolutions (for real-time applications)
        dropout -- dropout probability
        channels -- number of convolution channels
        """
        super().__init__(adj, num_joints_in, in_features, num_joints_out, filter_widths, causal, dropout, channels)

        self.expand_conv = nn.Conv2d(in_features, channels, (filter_widths[0], 1), stride=(filter_widths[0], 1), bias=False)
        nn.init.kaiming_normal_(self.expand_conv.weight)

        layers_conv = []
        layers_graph_conv = []
        layers_bn = []

        layers_graph_conv.append(GraphAttentionBlock(adj, channels, channels, p_dropout=dropout))

        self.causal_shift = [(filter_widths[0] // 2) if causal else 0]
        next_dilation = filter_widths[0]
        for i in range(1, len(filter_widths)):
            self.pad.append((filter_widths[i] - 1) * next_dilation // 2)
            self.causal_shift.append((filter_widths[i] // 2) if causal else 0)

            layers_conv.append(nn.Conv2d(2**i*channels, 2**i*channels, (filter_widths[i], 1), stride=(filter_widths[i], 1), bias=False))
            layers_bn.append(nn.BatchNorm2d(2**i*channels, momentum=0.1))
            layers_conv.append(nn.Conv2d(2**i*channels, 2**i*channels, 1, dilation=1, bias=False))
            layers_bn.append(nn.BatchNorm2d(2**i*channels, momentum=0.1))

            layers_graph_conv.append(GraphAttentionBlock(adj, 2**i*channels, 2**i*channels, p_dropout=dropout))

            next_dilation *= filter_widths[i]

        self.layers_conv = nn.ModuleList(layers_conv)
        self.layers_bn = nn.ModuleList(layers_bn)
        self.layers_graph_conv = nn.ModuleList(layers_graph_conv)

    def _forward_blocks(self, x):
        # x: (B, T, N, C) --> (B, C, T, N)
        x = x.permute(0, 3, 1, 2)
        x = self.init_bn(x)
        x = self.relu(self.expand_bn(self.expand_conv(x)))
        x = self.layers_graph_conv[0](x)

        for i in range(len(self.pad) - 1):
            res = x[:, :, self.causal_shift[i+1] + self.filter_widths[i+1]//2 :: self.filter_widths[i+1]]

            # x: (B, C, T, N)
            x = self.relu(self.layers_bn[2 * i](self.layers_conv[2 * i](x)))
            x = res + self.drop(self.relu(self.layers_bn[2 * i + 1](self.layers_conv[2 * i + 1](x))))

            x = self.layers_graph_conv[i+1](x)

        return x


if __name__ == "__main__":
    import torch
    import numpy as np
    import torchsummary
    from common.skeleton import Skeleton
    from common.graph_utils import adj_mx_from_skeleton

    h36m_skeleton = Skeleton(parents=[-1, 0, 1, 2, 0, 4, 5, 0, 7, 8, 9, 8, 11, 12, 8, 14, 15],
                             joints_left=[6, 7, 8, 9, 10, 16, 17, 18, 19, 20, 21, 22, 23],
                             joints_right=[1, 2, 3, 4, 5, 24, 25, 26, 27, 28, 29, 30, 31])

    humaneva_skeleton = Skeleton(parents=[-1, 0, 1, 2, 3, 1, 5, 6, 0, 8, 9, 0, 11, 12, 1],
                                 joints_left=[2, 3, 4, 8, 9, 10],
                                 joints_right=[5, 6, 7, 11, 12, 13])

    adj = adj_mx_from_skeleton(h36m_skeleton)
    model = SpatioTemporalModel(adj, num_joints_in=17, in_features=2, num_joints_out=17,
                                filter_widths=[3, 3, 3], channels=128)
    model = model.cuda()

    model_params = 0

    for parameter in model.parameters():
        model_params += parameter.numel()

    print('INFO: Trainable parameter count:', model_params)
    input = torch.randn(2, 27, 17, 2)
    input = input.cuda()

    # summary(model, (27, 15, 2))
    output = model(input)
    print(output.shape)