Spaces:
Running
Running
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import gradio as gr | |
# Load tokenizer and model manually | |
tokenizer = AutoTokenizer.from_pretrained("ibm-granite/granite-3.3-2b-instruct") | |
model = AutoModelForCausalLM.from_pretrained( | |
"ibm-granite/granite-3.3-2b-instruct", | |
torch_dtype=torch.float16, | |
device_map="auto" # uses GPU if available | |
) | |
def generate_text(prompt): | |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
with torch.no_grad(): | |
outputs = model.generate( | |
**inputs, | |
max_new_tokens=100, | |
do_sample=True, | |
temperature=0.7, | |
top_p=0.9, | |
) | |
return tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# Create Gradio UI | |
gr.Interface(fn=generate_text, inputs="text", outputs="text", title="Manual DeepSeek").launch() | |