alpcansoydas commited on
Commit
379a3a3
·
verified ·
1 Parent(s): 558041f

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +33 -0
app.py ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
3
+
4
+ # Load the tokenizer and model
5
+ model_name = "alpcansoydas/product-model-18.10.24-bert-total27label_ifhavemorethan100sampleperfamily"
6
+ tokenizer_name = "bert-base-uncased"
7
+
8
+ # Initialize tokenizer and model
9
+ tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
10
+ model = AutoModelForSequenceClassification.from_pretrained(model_name)
11
+
12
+ # Create a pipeline for text classification
13
+ classifier = pipeline("text-classification", model=model, tokenizer=tokenizer)
14
+
15
+ # Function to classify input text
16
+ def classify_product_family(text):
17
+ results = classifier(text)
18
+ predicted_label = results[0]['label']
19
+ return f"Predicted Family Label: {predicted_label}"
20
+
21
+ # Gradio interface
22
+ with gr.Blocks() as demo:
23
+ gr.Markdown("# Product Family Classifier")
24
+ gr.Markdown("Classify product descriptions into one of 27 family labels.")
25
+
26
+ input_text = gr.Textbox(label="Enter Product Description", placeholder="Type product description here...")
27
+ output_label = gr.Textbox(label="Predicted Family Label")
28
+
29
+ classify_button = gr.Button("Classify")
30
+ classify_button.click(fn=classify_product_family, inputs=input_text, outputs=output_label)
31
+
32
+ # Launch the Gradio interface
33
+ demo.launch()