import spaces import os import gradio as gr import shutil import sys import subprocess os.system("pip install git+https://github.com/facebookresearch/detectron2.git") os.system("git clone https://github.com/Visual-AI/Mr.DETR.git MrDETR && cd MrDETR && rm -f requirements.txt && cd ..") subprocess.run( shlex.split( "pip install detrex-0.3.0-cp310-cp310-linux_x86_64.whl" ) ) sys.path.append("MrDETR/") install_setup() detrex-0.3.0-cp310-cp310-linux_x86_64.whl from demo.predictors import VisualizationDemo from detectron2.checkpoint import DetectionCheckpointer from detectron2.config import LazyConfig, instantiate import numpy as np from PIL import Image if __name__ == "__main__": gr.close_all() cfg = LazyConfig.load("MrDETR/projects/mr_detr_align/configs/deformable_detr_swinl_two_stage_12ep_plusplus.py") cfg["model"].device = "cuda" cfg["train"].device = "cuda" # @spaces.GPU(duration=40, progress=gr.Progress(track_tqdm=True)) # def model = instantiate(cfg.model) checkpointer = DetectionCheckpointer(model) checkpointer.load("https://github.com/Visual-AI/Mr.DETR/releases/download/weights/MrDETR_align_swinL_12ep_900q_safe.pth") model.eval() model.cuda() vis_demo = VisualizationDemo( model=model, min_size_test=800, max_size_test=1333, img_format="RGB", metadata_dataset="coco_2017_val", ) @spaces.GPU def inference(img, confidence): img = np.array(img) _, results = vis_demo.run_on_image(img, confidence) results = Image.fromarray(results.get_image()[:, :, ::-1]) return results demo = gr.Interface( fn=inference, inputs=[ gr.Image(type="pil", image_mode="RGB"), # gr.Number(precision=2, minimum=0.0, maximum=1.0, value=0.5) gr.Slider(minimum=0.0, maximum=1.0, value=0.5, step=0.05) ], outputs="image", examples=[ ["MrDETR/assets/000000014226.jpg", 0.5], ["MrDETR/assets/000000028449.jpg", 0.3], ["MrDETR/assets/000000070048.jpg", 0.5], ["MrDETR/assets/000000218997.jpg", 0.5], ["MrDETR/assets/000000279774.jpg", 0.5], ["MrDETR/assets/000000434459.jpg", 0.5], ["MrDETR/assets/000000448448.jpg", 0.5], ["MrDETR/assets/000000560474.jpg", 0.5], ], title="[CVPR 2025] Mr. DETR: Instructive Multi-Route Training for Detection Transformers", description=''' [![Paper](https://img.shields.io/badge/arXiv-2412.10028-red)](https://arxiv.org/abs/2412.10028) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/mr-detr-instructive-multi-route-training-for/object-detection-on-coco-2017-val)](https://paperswithcode.com/sota/object-detection-on-coco-2017-val?p=mr-detr-instructive-multi-route-training-for) ''' ) demo.launch()