Spaces:
Running
on
Zero
Running
on
Zero
Create multi_scale_deform_attn.py
Browse files- multi_scale_deform_attn.py +418 -0
multi_scale_deform_attn.py
ADDED
@@ -0,0 +1,418 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The IDEA Authors. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
# ------------------------------------------------------------------------------------------------
|
16 |
+
# Deformable DETR
|
17 |
+
# Copyright (c) 2020 SenseTime. All Rights Reserved.
|
18 |
+
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
19 |
+
# ------------------------------------------------------------------------------------------------
|
20 |
+
# Modified from:
|
21 |
+
# https://github.com/fundamentalvision/Deformable-DETR/blob/main/models/ops/functions/ms_deform_attn_func.py
|
22 |
+
# https://github.com/fundamentalvision/Deformable-DETR/blob/main/models/ops/modules/ms_deform_attn.py
|
23 |
+
# https://github.com/open-mmlab/mmcv/blob/master/mmcv/ops/multi_scale_deform_attn.py
|
24 |
+
# ------------------------------------------------------------------------------------------------
|
25 |
+
|
26 |
+
import math
|
27 |
+
import warnings
|
28 |
+
from typing import Optional
|
29 |
+
import torch
|
30 |
+
import torch.nn as nn
|
31 |
+
import torch.nn.functional as F
|
32 |
+
from torch.autograd import Function
|
33 |
+
from torch.autograd.function import once_differentiable
|
34 |
+
from torch.nn.init import constant_, xavier_uniform_
|
35 |
+
|
36 |
+
|
37 |
+
# helpers
|
38 |
+
def _is_power_of_2(n):
|
39 |
+
if (not isinstance(n, int)) or (n < 0):
|
40 |
+
raise ValueError("invalid input for _is_power_of_2: {} (type: {})".format(n, type(n)))
|
41 |
+
return (n & (n - 1) == 0) and n != 0
|
42 |
+
|
43 |
+
|
44 |
+
class MultiScaleDeformableAttnFunction(Function):
|
45 |
+
@staticmethod
|
46 |
+
def forward(
|
47 |
+
ctx,
|
48 |
+
value,
|
49 |
+
value_spatial_shapes,
|
50 |
+
value_level_start_index,
|
51 |
+
sampling_locations,
|
52 |
+
attention_weights,
|
53 |
+
im2col_step,
|
54 |
+
):
|
55 |
+
ctx.im2col_step = im2col_step
|
56 |
+
output = _C.ms_deform_attn_forward(
|
57 |
+
value,
|
58 |
+
value_spatial_shapes,
|
59 |
+
value_level_start_index,
|
60 |
+
sampling_locations,
|
61 |
+
attention_weights,
|
62 |
+
ctx.im2col_step,
|
63 |
+
)
|
64 |
+
ctx.save_for_backward(
|
65 |
+
value,
|
66 |
+
value_spatial_shapes,
|
67 |
+
value_level_start_index,
|
68 |
+
sampling_locations,
|
69 |
+
attention_weights,
|
70 |
+
)
|
71 |
+
return output
|
72 |
+
|
73 |
+
@staticmethod
|
74 |
+
@once_differentiable
|
75 |
+
def backward(ctx, grad_output):
|
76 |
+
(
|
77 |
+
value,
|
78 |
+
value_spatial_shapes,
|
79 |
+
value_level_start_index,
|
80 |
+
sampling_locations,
|
81 |
+
attention_weights,
|
82 |
+
) = ctx.saved_tensors
|
83 |
+
grad_value, grad_sampling_loc, grad_attn_weight = _C.ms_deform_attn_backward(
|
84 |
+
value,
|
85 |
+
value_spatial_shapes,
|
86 |
+
value_level_start_index,
|
87 |
+
sampling_locations,
|
88 |
+
attention_weights,
|
89 |
+
grad_output,
|
90 |
+
ctx.im2col_step,
|
91 |
+
)
|
92 |
+
|
93 |
+
return grad_value, None, None, grad_sampling_loc, grad_attn_weight, None
|
94 |
+
|
95 |
+
|
96 |
+
def multi_scale_deformable_attn_pytorch(
|
97 |
+
value: torch.Tensor,
|
98 |
+
value_spatial_shapes: torch.Tensor,
|
99 |
+
sampling_locations: torch.Tensor,
|
100 |
+
attention_weights: torch.Tensor,
|
101 |
+
) -> torch.Tensor:
|
102 |
+
|
103 |
+
bs, _, num_heads, embed_dims = value.shape
|
104 |
+
_, num_queries, num_heads, num_levels, num_points, _ = sampling_locations.shape
|
105 |
+
value_list = value.split([H_ * W_ for H_, W_ in value_spatial_shapes], dim=1)
|
106 |
+
sampling_grids = 2 * sampling_locations - 1
|
107 |
+
sampling_value_list = []
|
108 |
+
for level, (H_, W_) in enumerate(value_spatial_shapes):
|
109 |
+
# bs, H_*W_, num_heads, embed_dims ->
|
110 |
+
# bs, H_*W_, num_heads*embed_dims ->
|
111 |
+
# bs, num_heads*embed_dims, H_*W_ ->
|
112 |
+
# bs*num_heads, embed_dims, H_, W_
|
113 |
+
value_l_ = (
|
114 |
+
value_list[level].flatten(2).transpose(1, 2).reshape(bs * num_heads, embed_dims, H_, W_)
|
115 |
+
)
|
116 |
+
# bs, num_queries, num_heads, num_points, 2 ->
|
117 |
+
# bs, num_heads, num_queries, num_points, 2 ->
|
118 |
+
# bs*num_heads, num_queries, num_points, 2
|
119 |
+
sampling_grid_l_ = sampling_grids[:, :, :, level].transpose(1, 2).flatten(0, 1)
|
120 |
+
# bs*num_heads, embed_dims, num_queries, num_points
|
121 |
+
sampling_value_l_ = F.grid_sample(
|
122 |
+
value_l_, sampling_grid_l_, mode="bilinear", padding_mode="zeros", align_corners=False
|
123 |
+
)
|
124 |
+
sampling_value_list.append(sampling_value_l_)
|
125 |
+
# (bs, num_queries, num_heads, num_levels, num_points) ->
|
126 |
+
# (bs, num_heads, num_queries, num_levels, num_points) ->
|
127 |
+
# (bs, num_heads, 1, num_queries, num_levels*num_points)
|
128 |
+
attention_weights = attention_weights.transpose(1, 2).reshape(
|
129 |
+
bs * num_heads, 1, num_queries, num_levels * num_points
|
130 |
+
)
|
131 |
+
output = (
|
132 |
+
(torch.stack(sampling_value_list, dim=-2).flatten(-2) * attention_weights)
|
133 |
+
.sum(-1)
|
134 |
+
.view(bs, num_heads * embed_dims, num_queries)
|
135 |
+
)
|
136 |
+
return output.transpose(1, 2).contiguous()
|
137 |
+
|
138 |
+
|
139 |
+
class MultiScaleDeformableAttention(nn.Module):
|
140 |
+
"""Multi-Scale Deformable Attention Module used in Deformable-DETR
|
141 |
+
|
142 |
+
`Deformable DETR: Deformable Transformers for End-to-End Object Detection.
|
143 |
+
<https://arxiv.org/pdf/2010.04159.pdf>`_.
|
144 |
+
|
145 |
+
Args:
|
146 |
+
embed_dim (int): The embedding dimension of Attention. Default: 256.
|
147 |
+
num_heads (int): The number of attention heads. Default: 8.
|
148 |
+
num_levels (int): The number of feature map used in Attention. Default: 4.
|
149 |
+
num_points (int): The number of sampling points for each query
|
150 |
+
in each head. Default: 4.
|
151 |
+
img2col_steps (int): The step used in image_to_column. Defualt: 64.
|
152 |
+
dropout (float): Dropout layer used in output. Default: 0.1.
|
153 |
+
batch_first (bool): if ``True``, then the input and output tensor will be
|
154 |
+
provided as `(bs, n, embed_dim)`. Default: False. `(n, bs, embed_dim)`
|
155 |
+
"""
|
156 |
+
|
157 |
+
def __init__(
|
158 |
+
self,
|
159 |
+
embed_dim: int = 256,
|
160 |
+
num_heads: int = 8,
|
161 |
+
num_levels: int = 4,
|
162 |
+
num_points: int = 4,
|
163 |
+
img2col_step: int = 64,
|
164 |
+
dropout: float = 0.1,
|
165 |
+
batch_first: bool = False,
|
166 |
+
):
|
167 |
+
super().__init__()
|
168 |
+
if embed_dim % num_heads != 0:
|
169 |
+
raise ValueError(
|
170 |
+
"embed_dim must be divisible by num_heads, but got {} and {}".format(
|
171 |
+
embed_dim, num_heads
|
172 |
+
)
|
173 |
+
)
|
174 |
+
head_dim = embed_dim // num_heads
|
175 |
+
|
176 |
+
self.dropout = nn.Dropout(dropout)
|
177 |
+
self.batch_first = batch_first
|
178 |
+
|
179 |
+
if not _is_power_of_2(head_dim):
|
180 |
+
warnings.warn(
|
181 |
+
"""
|
182 |
+
You'd better set d_model in MSDeformAttn to make sure that
|
183 |
+
each dim of the attention head a power of 2, which is more efficient.
|
184 |
+
"""
|
185 |
+
)
|
186 |
+
|
187 |
+
self.im2col_step = img2col_step
|
188 |
+
self.embed_dim = embed_dim
|
189 |
+
self.num_heads = num_heads
|
190 |
+
self.num_levels = num_levels
|
191 |
+
self.num_points = num_points
|
192 |
+
# n_heads * n_points and n_levels for multi-level feature inputs
|
193 |
+
self.sampling_offsets = nn.Linear(embed_dim, num_heads * num_levels * num_points * 2)
|
194 |
+
self.attention_weights = nn.Linear(embed_dim, num_heads * num_levels * num_points)
|
195 |
+
self.value_proj = nn.Linear(embed_dim, embed_dim)
|
196 |
+
self.output_proj = nn.Linear(embed_dim, embed_dim)
|
197 |
+
|
198 |
+
self.init_weights()
|
199 |
+
|
200 |
+
def init_weights(self):
|
201 |
+
"""
|
202 |
+
Default initialization for Parameters of Module.
|
203 |
+
"""
|
204 |
+
constant_(self.sampling_offsets.weight.data, 0.0)
|
205 |
+
thetas = torch.arange(self.num_heads, dtype=torch.float32) * (
|
206 |
+
2.0 * math.pi / self.num_heads
|
207 |
+
)
|
208 |
+
grid_init = torch.stack([thetas.cos(), thetas.sin()], -1)
|
209 |
+
grid_init = (
|
210 |
+
(grid_init / grid_init.abs().max(-1, keepdim=True)[0])
|
211 |
+
.view(self.num_heads, 1, 1, 2)
|
212 |
+
.repeat(1, self.num_levels, self.num_points, 1)
|
213 |
+
)
|
214 |
+
for i in range(self.num_points):
|
215 |
+
grid_init[:, :, i, :] *= i + 1
|
216 |
+
with torch.no_grad():
|
217 |
+
self.sampling_offsets.bias = nn.Parameter(grid_init.view(-1))
|
218 |
+
constant_(self.attention_weights.weight.data, 0.0)
|
219 |
+
constant_(self.attention_weights.bias.data, 0.0)
|
220 |
+
xavier_uniform_(self.value_proj.weight.data)
|
221 |
+
constant_(self.value_proj.bias.data, 0.0)
|
222 |
+
xavier_uniform_(self.output_proj.weight.data)
|
223 |
+
constant_(self.output_proj.bias.data, 0.0)
|
224 |
+
|
225 |
+
def forward(
|
226 |
+
self,
|
227 |
+
query: torch.Tensor,
|
228 |
+
key: Optional[torch.Tensor] = None,
|
229 |
+
value: Optional[torch.Tensor] = None,
|
230 |
+
identity: Optional[torch.Tensor] = None,
|
231 |
+
query_pos: Optional[torch.Tensor] = None,
|
232 |
+
key_padding_mask: Optional[torch.Tensor] = None,
|
233 |
+
reference_points: Optional[torch.Tensor] = None,
|
234 |
+
spatial_shapes: Optional[torch.Tensor] = None,
|
235 |
+
level_start_index: Optional[torch.Tensor] = None,
|
236 |
+
**kwargs
|
237 |
+
) -> torch.Tensor:
|
238 |
+
|
239 |
+
"""Forward Function of MultiScaleDeformableAttention
|
240 |
+
|
241 |
+
Args:
|
242 |
+
query (torch.Tensor): Query embeddings with shape
|
243 |
+
`(num_query, bs, embed_dim)`
|
244 |
+
key (torch.Tensor): Key embeddings with shape
|
245 |
+
`(num_key, bs, embed_dim)`
|
246 |
+
value (torch.Tensor): Value embeddings with shape
|
247 |
+
`(num_key, bs, embed_dim)`
|
248 |
+
identity (torch.Tensor): The tensor used for addition, with the
|
249 |
+
same shape as `query`. Default: None. If None, `query` will be
|
250 |
+
used.
|
251 |
+
query_pos (torch.Tensor): The position embedding for `query`. Default: None.
|
252 |
+
key_padding_mask (torch.Tensor): ByteTensor for `query`, with shape `(bs, num_key)`,
|
253 |
+
indicating which elements within `key` to be ignored in attention.
|
254 |
+
reference_points (torch.Tensor): The normalized reference points
|
255 |
+
with shape `(bs, num_query, num_levels, 2)`,
|
256 |
+
all elements is range in [0, 1], top-left (0, 0),
|
257 |
+
bottom-right (1, 1), including padding are.
|
258 |
+
or `(N, Length_{query}, num_levels, 4)`, add additional
|
259 |
+
two dimensions `(h, w)` to form reference boxes.
|
260 |
+
spatial_shapes (torch.Tensor): Spatial shape of features in different levels.
|
261 |
+
With shape `(num_levels, 2)`, last dimension represents `(h, w)`.
|
262 |
+
level_start_index (torch.Tensor): The start index of each level. A tensor with
|
263 |
+
shape `(num_levels, )` which can be represented as
|
264 |
+
`[0, h_0 * w_0, h_0 * w_0 + h_1 * w_1, ...]`.
|
265 |
+
|
266 |
+
Returns:
|
267 |
+
torch.Tensor: forward results with shape `(num_query, bs, embed_dim)`
|
268 |
+
"""
|
269 |
+
|
270 |
+
if value is None:
|
271 |
+
value = query
|
272 |
+
|
273 |
+
if identity is None:
|
274 |
+
identity = query
|
275 |
+
if query_pos is not None:
|
276 |
+
query = query + query_pos
|
277 |
+
|
278 |
+
if not self.batch_first:
|
279 |
+
# change to (bs, num_query ,embed_dims)
|
280 |
+
query = query.permute(1, 0, 2)
|
281 |
+
value = value.permute(1, 0, 2)
|
282 |
+
|
283 |
+
bs, num_query, _ = query.shape
|
284 |
+
bs, num_value, _ = value.shape
|
285 |
+
|
286 |
+
assert (spatial_shapes[:, 0] * spatial_shapes[:, 1]).sum() == num_value
|
287 |
+
|
288 |
+
# value projection
|
289 |
+
value = self.value_proj(value)
|
290 |
+
# fill "0" for the padding part
|
291 |
+
if key_padding_mask is not None:
|
292 |
+
value = value.masked_fill(key_padding_mask[..., None], float(0))
|
293 |
+
# [bs, all hw, 256] -> [bs, all hw, 8, 32]
|
294 |
+
value = value.view(bs, num_value, self.num_heads, -1)
|
295 |
+
# [bs, all hw, 8, 4, 4, 2]: 8 heads, 4 level features, 4 sampling points, 2 offsets
|
296 |
+
sampling_offsets = self.sampling_offsets(query).view(
|
297 |
+
bs, num_query, self.num_heads, self.num_levels, self.num_points, 2
|
298 |
+
)
|
299 |
+
# [bs, all hw, 8, 16]: 4 level 4 sampling points: 16 features total
|
300 |
+
attention_weights = self.attention_weights(query).view(
|
301 |
+
bs, num_query, self.num_heads, self.num_levels * self.num_points
|
302 |
+
)
|
303 |
+
attention_weights = attention_weights.softmax(-1)
|
304 |
+
attention_weights = attention_weights.view(
|
305 |
+
bs,
|
306 |
+
num_query,
|
307 |
+
self.num_heads,
|
308 |
+
self.num_levels,
|
309 |
+
self.num_points,
|
310 |
+
)
|
311 |
+
|
312 |
+
# bs, num_query, num_heads, num_levels, num_points, 2
|
313 |
+
if reference_points.shape[-1] == 2:
|
314 |
+
|
315 |
+
# reference_points [bs, all hw, 4, 2] -> [bs, all hw, 1, 4, 1, 2]
|
316 |
+
# sampling_offsets [bs, all hw, 8, 4, 4, 2]
|
317 |
+
# offset_normalizer [4, 2] -> [1, 1, 1, 4, 1, 2]
|
318 |
+
# references_points + sampling_offsets
|
319 |
+
|
320 |
+
offset_normalizer = torch.stack([spatial_shapes[..., 1], spatial_shapes[..., 0]], -1)
|
321 |
+
sampling_locations = (
|
322 |
+
reference_points[:, :, None, :, None, :]
|
323 |
+
+ sampling_offsets / offset_normalizer[None, None, None, :, None, :]
|
324 |
+
)
|
325 |
+
elif reference_points.shape[-1] == 4:
|
326 |
+
sampling_locations = (
|
327 |
+
reference_points[:, :, None, :, None, :2]
|
328 |
+
+ sampling_offsets
|
329 |
+
/ self.num_points
|
330 |
+
* reference_points[:, :, None, :, None, 2:]
|
331 |
+
* 0.5
|
332 |
+
)
|
333 |
+
else:
|
334 |
+
raise ValueError(
|
335 |
+
"Last dim of reference_points must be 2 or 4, but get {} instead.".format(
|
336 |
+
reference_points.shape[-1]
|
337 |
+
)
|
338 |
+
)
|
339 |
+
|
340 |
+
# the original impl for fp32 training
|
341 |
+
if torch.cuda.is_available() and value.is_cuda:
|
342 |
+
output = MultiScaleDeformableAttnFunction.apply(
|
343 |
+
value.to(torch.float32) if value.dtype==torch.float16 else value,
|
344 |
+
spatial_shapes,
|
345 |
+
level_start_index,
|
346 |
+
sampling_locations,
|
347 |
+
attention_weights,
|
348 |
+
self.im2col_step,
|
349 |
+
)
|
350 |
+
else:
|
351 |
+
output = multi_scale_deformable_attn_pytorch(
|
352 |
+
value, spatial_shapes, sampling_locations, attention_weights
|
353 |
+
)
|
354 |
+
|
355 |
+
if value.dtype==torch.float16:
|
356 |
+
output=output.to(torch.float16)
|
357 |
+
|
358 |
+
output = self.output_proj(output)
|
359 |
+
|
360 |
+
if not self.batch_first:
|
361 |
+
output = output.permute(1, 0, 2)
|
362 |
+
|
363 |
+
return self.dropout(output) + identity
|
364 |
+
|
365 |
+
|
366 |
+
def create_dummy_class(klass, dependency, message=""):
|
367 |
+
"""
|
368 |
+
When a dependency of a class is not available, create a dummy class which throws ImportError
|
369 |
+
when used.
|
370 |
+
|
371 |
+
Args:
|
372 |
+
klass (str): name of the class.
|
373 |
+
dependency (str): name of the dependency.
|
374 |
+
message: extra message to print
|
375 |
+
Returns:
|
376 |
+
class: a class object
|
377 |
+
"""
|
378 |
+
err = "Cannot import '{}', therefore '{}' is not available.".format(dependency, klass)
|
379 |
+
if message:
|
380 |
+
err = err + " " + message
|
381 |
+
|
382 |
+
class _DummyMetaClass(type):
|
383 |
+
# throw error on class attribute access
|
384 |
+
def __getattr__(_, __): # noqa: B902
|
385 |
+
raise ImportError(err)
|
386 |
+
|
387 |
+
class _Dummy(object, metaclass=_DummyMetaClass):
|
388 |
+
# throw error on constructor
|
389 |
+
def __init__(self, *args, **kwargs):
|
390 |
+
raise ImportError(err)
|
391 |
+
|
392 |
+
return _Dummy
|
393 |
+
|
394 |
+
|
395 |
+
def create_dummy_func(func, dependency, message=""):
|
396 |
+
"""
|
397 |
+
When a dependency of a function is not available, create a dummy function which throws
|
398 |
+
ImportError when used.
|
399 |
+
|
400 |
+
Args:
|
401 |
+
func (str): name of the function.
|
402 |
+
dependency (str or list[str]): name(s) of the dependency.
|
403 |
+
message: extra message to print
|
404 |
+
Returns:
|
405 |
+
function: a function object
|
406 |
+
"""
|
407 |
+
err = "Cannot import '{}', therefore '{}' is not available.".format(dependency, func)
|
408 |
+
if message:
|
409 |
+
err = err + " " + message
|
410 |
+
|
411 |
+
if isinstance(dependency, (list, tuple)):
|
412 |
+
dependency = ",".join(dependency)
|
413 |
+
|
414 |
+
def _dummy(*args, **kwargs):
|
415 |
+
raise ImportError(err)
|
416 |
+
|
417 |
+
return _dummy
|
418 |
+
|