Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,584 Bytes
a109861 c782801 5a07d09 68aee5f 1265529 bc2dc1a 1265529 a7e2698 bc2dc1a 1265529 bc2dc1a 1265529 bc2dc1a a7e2698 bc2dc1a 1265529 bc2dc1a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
import os
os.system("pip install git+https://github.com/facebookresearch/detectron2.git")
os.system("git clone https://github.com/Visual-AI/Mr.DETR.git MrDETR && cd MrDETR && rm -f requirements.txt && python setup.py build && python setup.py install & cd ..")
import sys
sys.path.append("MrDETR/")
import gradio as gr
from demo.predictors import VisualizationDemo
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.config import LazyConfig, instantiate
import numpy as np
if __name__ == "__main__":
gr.close_all()
cfg = LazyConfig.load("MrDETR/projects/mr_detr_align/configs/deformable_detr_swinl_two_stage_12ep_plusplus.py")
model = instantiate(cfg.model)
checkpointer = DetectionCheckpointer(model)
checkpointer.load("https://huggingface.co/allencbzhang/Mr.DETR/blob/main/MrDETR_align_swinL_12ep_900q.pth")
model.eval()
vis_demo = VisualizationDemo(
model=model,
min_size_test=800,
max_size_test=1333,
img_format="RGB",
metadata_dataset="coco_2017_val",
)
def inference(img, confidence):
img = np.array(img)
_, results = vis_demo.run_on_image(img, confidence)
return results
demo = gr.Interface(
fn=inference,
inputs=[
gr.Image(type="pil", image_mode="RGB"),
gr.Number(precision=2, minimum=0.0, maximum=1.0, value=0.5)
],
outputs="image",
examples=[
["MrDETR/assets/000000014226.jpg"],
["MrDETR/assets/000000028449.jpg"]
]
)
demo.launch() |