File size: 16,318 Bytes
3c8c320
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
import json
import random
import textwrap
from collections import defaultdict
from datetime import datetime
from typing import Dict, List, Tuple
from zoneinfo import ZoneInfo

import gradio as gr
import numpy as np
import pandas as pd
import plotly.express as px
import plotly.io as pio
from apscheduler.schedulers.background import BackgroundScheduler
from scipy.optimize import minimize
from scipy.special import expit


# Constants
COLORS = [
    "#1B7FFF",
    "#F07D1A",
    "#BA24C7",
    "#FE42C7",
    "#0D4B7C",
    "#0EAC96",
    "#AA7CFF",
    "#B50550",
    "#009EEB",
    "#220B55",
    "#7B3301",
]
WR_PLOT = None
BT_PLOT = None
UPDATE_TIME = None
NAME_MAPPING = {
    "gemini_2f": "Gemini 2.0 Flash (Experimental)",
    "diva_3_8b": "DiVA Llama 3 8B",
    "qwen2": "Qwen 2 Audio",
    "pipe_l3.0": "Pipelined Llama 3 8B",
    "gemini_1.5f": "Gemini 1.5 Flash",
    "gpt4o": "GPT-4o",
    "gemini_1.5p": "Gemini 1.5 Pro",
    "typhoon_audio": "Typhoon Audio",
}


def get_aesthetic_timestamp():
    """
    Returns a beautifully formatted timestamp in the format:
    'Tuesday, December 10th, 2024 at 3:45 PM'
    """
    # Get timezone object for PST
    pst = ZoneInfo("America/Los_Angeles")

    # Get current time in PST
    now = datetime.now(pst)

    # Add suffix to day number (1st, 2nd, 3rd, etc.)
    day = now.day
    if 4 <= day <= 20 or 24 <= day <= 30:
        suffix = "th"
    else:
        suffix = ["st", "nd", "rd"][day % 10 - 1]
    return now.strftime(f"%A, %B {day}{suffix}, %Y at %-I:%M %p")


def bootstrap_ci(data, n_bootstrap=10000, ci=95):
    """Calculate bootstrap confidence intervals."""
    bootstrap_samples = []
    for _ in range(n_bootstrap):
        bootstrap_samples.append(np.mean(random.choices(data, k=len(data))))
    lower_bound = np.percentile(bootstrap_samples, (100 - ci) / 2)
    upper_bound = np.percentile(bootstrap_samples, 100 - (100 - ci) / 2)
    return lower_bound, upper_bound


def calculate_win_rates(json_data):
    """Calculate win rates from JSON data."""
    data = json.loads(json_data)

    model_wins = defaultdict(int)
    total_matches = defaultdict(int)
    total_votes = 0

    for value in data["_default"].values():
        total_votes += 1
        if value["outcome"] == 0:
            model_wins[value["model_a"]] += 1
        elif value["outcome"] == 1:
            model_wins[value["model_b"]] += 1
        elif value["outcome"] == 0.5:
            model_wins[value["model_a"]] += 0.5
            model_wins[value["model_b"]] += 0.5
        total_matches[value["model_a"]] += 1
        total_matches[value["model_b"]] += 1

    per_model_wins = {}
    for model, wins in model_wins.items():
        win_rate = wins / total_matches[model]
        wins_data = [1] * int(wins) + [0] * int(total_matches[model] - wins)
        if int(wins) != wins:
            wins_data += [0.5]
        lower, upper = bootstrap_ci(wins_data)
        per_model_wins[model] = {
            "model": model,
            "win_rate": win_rate,
            "95_lower": (win_rate - lower),
            "95_upper": (upper - win_rate),
        }
    df = pd.DataFrame.from_dict(per_model_wins).T

    return df, total_votes


def create_win_rate_plot(wins_df):
    """Create win rate plot using Plotly."""
    wins_df["Source"] = wins_df["Source"].astype(str)
    wins_df = wins_df.sort_values(by=["Source", "win_rate"], ascending=False)
    wins_df["model"] = wins_df["model"].apply(lambda x: NAME_MAPPING.get(x, x))

    fig = px.bar(
        wins_df,
        x="model",
        y="win_rate",
        error_y="95_upper",
        error_y_minus="95_lower",
        color="model",
        color_discrete_sequence=COLORS,
        animation_group="model",
        animation_frame="Source",
    )

    fig.update_traces(
        hovertemplate="<b>%{x}</b><br>" + "Win Rate: %{y}" + "<extra></extra>",
    )

    fig.update_layout(
        autosize=True,
        showlegend=False,
        plot_bgcolor="white",
        title={
            "text": "Talk Arena Live Win Rates<br>with 95% Confidence Intervals",
            "y": 0.95,
            "x": 0.5,
            "xanchor": "center",
            "yanchor": "top",
        },
        xaxis_title="Model",
        yaxis_title="Win Rate (%)",
        bargap=0.2,
        yaxis=dict(
            tickformat=".0%", tickmode="auto", range=[0, 1.01], gridcolor="#C9CCD1", griddash="dash", gridwidth=2
        ),
        legend=dict(
            orientation="h",  # Make legend horizontal
            yanchor="bottom",
            y=-0.5,  # Position below plot
            xanchor="center",
            x=0.5,  # Center horizontally
            bgcolor="rgba(255, 255, 255, 0.8)",
            bordercolor="#C9CCD1",
            borderwidth=1,
        ),
        margin=dict(l=10, r=10, t=0, b=10),  # Balanced margins
        hoverlabel=dict(bgcolor="white", font_size=14, bordercolor="gray"),
    )

    fig.update_xaxes(showgrid=False)

    return fig


# Bradley-Terry Model Functions
def load_live_votes(json_str: str) -> pd.DataFrame:
    """Load and preprocess live votes data from JSON string."""
    data = json.loads(json_str)
    df = pd.DataFrame.from_dict(data["_default"], orient="index")
    df["winner"] = df["outcome"].map({1: "model_b", 0: "model_a", 0.5: "tie"})
    return df


def preprocess_for_bt(df: pd.DataFrame) -> Tuple[np.ndarray, np.ndarray, List[str], np.ndarray]:
    """Preprocess data for Bradley-Terry model fitting."""
    all_models = pd.concat([df["model_a"], df["model_b"]]).unique()
    model_to_idx = {model: idx for idx, model in enumerate(all_models)}

    matchups = np.array([[model_to_idx[row.model_a], model_to_idx[row.model_b]] for _, row in df.iterrows()])

    outcomes = np.array(
        [1.0 if row.winner == "model_a" else (0.5 if row.winner == "tie" else 0.0) for _, row in df.iterrows()]
    )

    unique_matches = np.column_stack([matchups, outcomes])
    unique_matches, weights = np.unique(unique_matches, return_counts=True, axis=0)

    return (unique_matches[:, :2].astype(np.int32), unique_matches[:, 2], list(all_models), weights.astype(np.float64))


def bt_loss_and_grad(
    ratings: np.ndarray, matchups: np.ndarray, outcomes: np.ndarray, weights: np.ndarray, alpha: float = 1.0
) -> Tuple[float, np.ndarray]:
    """Compute Bradley-Terry loss and gradient."""
    matchup_ratings = ratings[matchups]
    logits = alpha * (matchup_ratings[:, 0] - matchup_ratings[:, 1])
    probs = expit(logits)

    loss = -((np.log(probs) * outcomes + np.log(1.0 - probs) * (1.0 - outcomes)) * weights).sum()

    matchups_grads = -alpha * (outcomes - probs) * weights
    model_grad = np.zeros_like(ratings)
    np.add.at(model_grad, matchups[:, [0, 1]], matchups_grads[:, None] * np.array([1.0, -1.0], dtype=np.float64))

    return loss, model_grad


def fit_bt(
    matchups: np.ndarray, outcomes: np.ndarray, weights: np.ndarray, n_models: int, alpha: float, tol: float = 1e-6
) -> np.ndarray:
    """Fit Bradley-Terry model using L-BFGS-B optimization."""
    initial_ratings = np.zeros(n_models, dtype=np.float64)

    result = minimize(
        fun=bt_loss_and_grad,
        x0=initial_ratings,
        args=(matchups, outcomes, weights, alpha),
        jac=True,
        method="L-BFGS-B",
        options={"disp": False, "maxiter": 100, "gtol": tol},
    )

    return result["x"]


def scale_and_offset(
    ratings: np.ndarray, models: List[str], scale: float = 400, init_rating: float = 1000
) -> np.ndarray:
    """Scale ratings to familiar Elo-like scale."""
    scaled_ratings = (ratings * scale) + init_rating
    return scaled_ratings


def compute_bootstrap_bt(
    data: str,
    num_round: int = 100,
    base: float = 10.0,
    scale: float = 400.0,
    init_rating: float = 1000.0,
    tol: float = 1e-6,
) -> pd.DataFrame:
    """Compute bootstrap Bradley-Terry ratings from live votes data."""
    df = load_live_votes(data)
    matchups, outcomes, models, weights = preprocess_for_bt(df)

    rng = np.random.default_rng(seed=0)
    total_matches = len(df)
    idxs = rng.multinomial(n=total_matches, pvals=weights / weights.sum(), size=num_round)
    boot_weights = idxs.astype(np.float64) / total_matches

    ratings_list = []
    for sample_weights in boot_weights:
        ratings = fit_bt(
            matchups=matchups,
            outcomes=outcomes,
            weights=sample_weights,
            n_models=len(models),
            alpha=np.log(base),
            tol=tol,
        )
        scaled_ratings = scale_and_offset(ratings=ratings, models=models, scale=scale, init_rating=init_rating)
        ratings_list.append(scaled_ratings)

    df_ratings = pd.DataFrame(ratings_list, columns=models)
    return df_ratings[df_ratings.median().sort_values(ascending=False).index]


def create_bt_plot(bootstrap_ratings):
    """Create Bradley-Terry ratings plot using Plotly."""
    melted_bootstrap = bootstrap_ratings.melt(id_vars=["Source", "level_1"], var_name="Model", value_name="BT")
    melted_bootstrap = melted_bootstrap.dropna()
    melted_bootstrap = melted_bootstrap.sort_values(by=["Source", "Model", "BT"], ascending=False)
    # Pretty Names
    melted_bootstrap["Model"] = melted_bootstrap["Model"].apply(lambda x: NAME_MAPPING.get(x, x))
    # Compression for Client Side
    melted_bootstrap["BT"] = melted_bootstrap["BT"].apply(lambda x: int(x))
    min_samp = melted_bootstrap[melted_bootstrap["BT"] > 0]["BT"].min()
    max_samp = melted_bootstrap["BT"].max()
    idx_keep = list(range(0, len(melted_bootstrap), 10))
    melted_bootstrap = melted_bootstrap.iloc[idx_keep]
    melted_bootstrap = melted_bootstrap.sort_values(by=["Source", "BT"], ascending=False)
    fig = px.violin(
        melted_bootstrap,
        x="Model",
        y="BT",
        color="Model",
        animation_group="Model",
        animation_frame="Source",
        color_discrete_sequence=COLORS,
    )

    fig.update_layout(
        autosize=True,
        showlegend=False,
        plot_bgcolor="white",
        title={
            "text": "Talk Arena Live Bradley-Terry Ratings<br>with Bootstrapped Variance",
            "y": 0.9,
            "x": 0.5,
            "xanchor": "center",
            "yanchor": "top",
        },
        xaxis_title="Model",
        yaxis_title="Rating",
        yaxis=dict(gridcolor="#C9CCD1", range=[min_samp - 10, max_samp + 10], griddash="dash"),
        legend=dict(
            orientation="h",  # Make legend horizontal
            yanchor="bottom",
            y=-0.5,  # Position below plot
            xanchor="center",
            x=0.5,  # Center horizontally
            bgcolor="rgba(255, 255, 255, 0.8)",
            bordercolor="#C9CCD1",
            borderwidth=1,
        ),
        margin=dict(l=10, r=10, t=0, b=10),  # Balanced margins
    )

    fig.update_xaxes(showgrid=False)
    fig.update_yaxes(showgrid=True, gridwidth=2)

    return fig


def get_wr_plot():
    jrep = json.loads(pio.to_json(WR_PLOT))
    for step in jrep["layout"]["sliders"][0]["steps"]:
        step["args"][1]["frame"]["duration"] = 500
        step["args"][1]["transition"]["duration"] = 500
    jrep["layout"]["updatemenus"] = []
    jrep["layout"]["sliders"][0]["len"] = 0.8
    jrep["layout"]["sliders"][0]["pad"] = {}
    return json.dumps(jrep)


def get_bt_plot():
    jrep = json.loads(pio.to_json(BT_PLOT))
    for step in jrep["layout"]["sliders"][0]["steps"]:
        step["args"][1]["frame"]["duration"] = 500
        step["args"][1]["transition"]["duration"] = 500
    jrep["layout"]["updatemenus"] = []
    jrep["layout"]["sliders"][0]["len"] = 0.8
    jrep["layout"]["sliders"][0]["pad"] = {}
    return json.dumps(jrep)


def get_update_time():
    return UPDATE_TIME


def viz_factory(force=False):
    def process_and_visualize():
        """Main function to process JSON data and create visualizations."""
        global WR_PLOT, BT_PLOT, UPDATE_TIME
        if WR_PLOT is not None and BT_PLOT is not None and not force:
            return WR_PLOT, BT_PLOT, UPDATE_TIME
        try:
            # Read JSON data
            pub_json_data = open("/home/wheld3/talk-arena/live_votes.json", "r").read()
            prolific_json_data = open("/home/wheld3/talk-arena/prolific_votes.json", "r").read()
            merged_json_data = json.dumps(
                {"_default": {**json.loads(pub_json_data)["_default"], **json.loads(prolific_json_data)["_default"]}}
            )
            # Calculate win rates and create win rate plot
            pub_win_rates, pub_votes = calculate_win_rates(pub_json_data)
            pro_win_rates, pro_votes = calculate_win_rates(prolific_json_data)
            total_win_rates, total_votes = calculate_win_rates(merged_json_data)
            all_models = total_win_rates["model"].unique()
            pro_models = pro_win_rates["model"].unique()
            for model in all_models:
                if model not in pro_models:
                    new_index = len(pro_win_rates)
                    pro_win_rates.loc[new_index] = [model, -0.1, -0.1, -0.2]

            win_rates = (
                pd.concat([pub_win_rates, pro_win_rates, total_win_rates], keys=["Public", "Prolific", "Total"])
                .reset_index()
                .rename(columns={"level_0": "Source"})
            )
            WR_PLOT = create_win_rate_plot(win_rates)

            # Calculate Bradley-Terry ratings and create BT plot
            pub_bootstrap_ratings = compute_bootstrap_bt(pub_json_data, num_round=10000)
            pro_bootstrap_ratings = compute_bootstrap_bt(prolific_json_data, num_round=10000)
            total_bootstrap_ratings = compute_bootstrap_bt(merged_json_data, num_round=10000)
            for model in all_models:
                if model not in pro_models:
                    pro_bootstrap_ratings[model] = pro_bootstrap_ratings["diva_3_8b"] * -1

            bootstrap_ratings = (
                pd.concat(
                    [pub_bootstrap_ratings, pro_bootstrap_ratings, total_bootstrap_ratings],
                    keys=["Public", "Prolific", "Total"],
                )
                .reset_index()
                .rename(columns={"level_0": "Source"})
            )
            BT_PLOT = create_bt_plot(bootstrap_ratings)
            UPDATE_TIME = gr.Markdown(
                value=textwrap.dedent(
                    f"""
                    <h4 class="nx-font-semibold nx-tracking-tight nx-text-slate-900 dark:nx-text-slate-100 nx-text-xl">Last Refresh: {get_aesthetic_timestamp()} PST</h4>
                    <h6 class="nx-font-semibold nx-tracking-tight nx-text-slate-900 dark:nx-text-slate-100 nx-text-base">Total Votes: {total_votes}, Public Votes: {pub_votes}, Prolific Votes: {pro_votes}</h6>
                    """
                )
            )
            return WR_PLOT, BT_PLOT, UPDATE_TIME

        except Exception as e:
            raise gr.Error(f"Error processing file: {str(e)}")

    return process_and_visualize


theme = gr.themes.Soft(
    primary_hue=gr.themes.Color(
        c100="#82000019",
        c200="#82000033",
        c300="#8200004c",
        c400="#82000066",
        c50="#8200007f",
        c500="#8200007f",
        c600="#82000099",
        c700="#820000b2",
        c800="#820000cc",
        c900="#820000e5",
        c950="#820000f2",
    ),
    secondary_hue="rose",
    neutral_hue="stone",
)

# Create Gradio interface
with gr.Blocks(title="Talk Arena Leaderboard Analysis", theme=theme) as demo:
    viz_factory(force=True)()
    last_updated = UPDATE_TIME
    with gr.Row():
        bt_plot = gr.Plot(label="Bradley-Terry Ratings", value=BT_PLOT)
    with gr.Row():
        win_rate_plot = gr.Plot(label="Win Rates", value=WR_PLOT)

    d1 = gr.Textbox(visible=False)
    demo.load(
        fn=viz_factory(force=False), inputs=[], outputs=[win_rate_plot, bt_plot, last_updated], show_progress="minimal"
    )
    demo.load(fn=get_wr_plot, inputs=[], outputs=[d1])
    demo.load(fn=get_bt_plot, inputs=[], outputs=[d1])
    demo.load(fn=get_update_time, inputs=[], outputs=[d1])

if __name__ == "__main__":
    scheduler = BackgroundScheduler()
    scheduler.add_job(func=viz_factory(force=True), trigger="interval", seconds=300)
    scheduler.start()
    demo.queue(default_concurrency_limit=10, api_open=True).launch(share=True, server_port=8004, node_port=8005)