Spaces:
Running
Running
File size: 16,318 Bytes
3c8c320 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 |
import json
import random
import textwrap
from collections import defaultdict
from datetime import datetime
from typing import Dict, List, Tuple
from zoneinfo import ZoneInfo
import gradio as gr
import numpy as np
import pandas as pd
import plotly.express as px
import plotly.io as pio
from apscheduler.schedulers.background import BackgroundScheduler
from scipy.optimize import minimize
from scipy.special import expit
# Constants
COLORS = [
"#1B7FFF",
"#F07D1A",
"#BA24C7",
"#FE42C7",
"#0D4B7C",
"#0EAC96",
"#AA7CFF",
"#B50550",
"#009EEB",
"#220B55",
"#7B3301",
]
WR_PLOT = None
BT_PLOT = None
UPDATE_TIME = None
NAME_MAPPING = {
"gemini_2f": "Gemini 2.0 Flash (Experimental)",
"diva_3_8b": "DiVA Llama 3 8B",
"qwen2": "Qwen 2 Audio",
"pipe_l3.0": "Pipelined Llama 3 8B",
"gemini_1.5f": "Gemini 1.5 Flash",
"gpt4o": "GPT-4o",
"gemini_1.5p": "Gemini 1.5 Pro",
"typhoon_audio": "Typhoon Audio",
}
def get_aesthetic_timestamp():
"""
Returns a beautifully formatted timestamp in the format:
'Tuesday, December 10th, 2024 at 3:45 PM'
"""
# Get timezone object for PST
pst = ZoneInfo("America/Los_Angeles")
# Get current time in PST
now = datetime.now(pst)
# Add suffix to day number (1st, 2nd, 3rd, etc.)
day = now.day
if 4 <= day <= 20 or 24 <= day <= 30:
suffix = "th"
else:
suffix = ["st", "nd", "rd"][day % 10 - 1]
return now.strftime(f"%A, %B {day}{suffix}, %Y at %-I:%M %p")
def bootstrap_ci(data, n_bootstrap=10000, ci=95):
"""Calculate bootstrap confidence intervals."""
bootstrap_samples = []
for _ in range(n_bootstrap):
bootstrap_samples.append(np.mean(random.choices(data, k=len(data))))
lower_bound = np.percentile(bootstrap_samples, (100 - ci) / 2)
upper_bound = np.percentile(bootstrap_samples, 100 - (100 - ci) / 2)
return lower_bound, upper_bound
def calculate_win_rates(json_data):
"""Calculate win rates from JSON data."""
data = json.loads(json_data)
model_wins = defaultdict(int)
total_matches = defaultdict(int)
total_votes = 0
for value in data["_default"].values():
total_votes += 1
if value["outcome"] == 0:
model_wins[value["model_a"]] += 1
elif value["outcome"] == 1:
model_wins[value["model_b"]] += 1
elif value["outcome"] == 0.5:
model_wins[value["model_a"]] += 0.5
model_wins[value["model_b"]] += 0.5
total_matches[value["model_a"]] += 1
total_matches[value["model_b"]] += 1
per_model_wins = {}
for model, wins in model_wins.items():
win_rate = wins / total_matches[model]
wins_data = [1] * int(wins) + [0] * int(total_matches[model] - wins)
if int(wins) != wins:
wins_data += [0.5]
lower, upper = bootstrap_ci(wins_data)
per_model_wins[model] = {
"model": model,
"win_rate": win_rate,
"95_lower": (win_rate - lower),
"95_upper": (upper - win_rate),
}
df = pd.DataFrame.from_dict(per_model_wins).T
return df, total_votes
def create_win_rate_plot(wins_df):
"""Create win rate plot using Plotly."""
wins_df["Source"] = wins_df["Source"].astype(str)
wins_df = wins_df.sort_values(by=["Source", "win_rate"], ascending=False)
wins_df["model"] = wins_df["model"].apply(lambda x: NAME_MAPPING.get(x, x))
fig = px.bar(
wins_df,
x="model",
y="win_rate",
error_y="95_upper",
error_y_minus="95_lower",
color="model",
color_discrete_sequence=COLORS,
animation_group="model",
animation_frame="Source",
)
fig.update_traces(
hovertemplate="<b>%{x}</b><br>" + "Win Rate: %{y}" + "<extra></extra>",
)
fig.update_layout(
autosize=True,
showlegend=False,
plot_bgcolor="white",
title={
"text": "Talk Arena Live Win Rates<br>with 95% Confidence Intervals",
"y": 0.95,
"x": 0.5,
"xanchor": "center",
"yanchor": "top",
},
xaxis_title="Model",
yaxis_title="Win Rate (%)",
bargap=0.2,
yaxis=dict(
tickformat=".0%", tickmode="auto", range=[0, 1.01], gridcolor="#C9CCD1", griddash="dash", gridwidth=2
),
legend=dict(
orientation="h", # Make legend horizontal
yanchor="bottom",
y=-0.5, # Position below plot
xanchor="center",
x=0.5, # Center horizontally
bgcolor="rgba(255, 255, 255, 0.8)",
bordercolor="#C9CCD1",
borderwidth=1,
),
margin=dict(l=10, r=10, t=0, b=10), # Balanced margins
hoverlabel=dict(bgcolor="white", font_size=14, bordercolor="gray"),
)
fig.update_xaxes(showgrid=False)
return fig
# Bradley-Terry Model Functions
def load_live_votes(json_str: str) -> pd.DataFrame:
"""Load and preprocess live votes data from JSON string."""
data = json.loads(json_str)
df = pd.DataFrame.from_dict(data["_default"], orient="index")
df["winner"] = df["outcome"].map({1: "model_b", 0: "model_a", 0.5: "tie"})
return df
def preprocess_for_bt(df: pd.DataFrame) -> Tuple[np.ndarray, np.ndarray, List[str], np.ndarray]:
"""Preprocess data for Bradley-Terry model fitting."""
all_models = pd.concat([df["model_a"], df["model_b"]]).unique()
model_to_idx = {model: idx for idx, model in enumerate(all_models)}
matchups = np.array([[model_to_idx[row.model_a], model_to_idx[row.model_b]] for _, row in df.iterrows()])
outcomes = np.array(
[1.0 if row.winner == "model_a" else (0.5 if row.winner == "tie" else 0.0) for _, row in df.iterrows()]
)
unique_matches = np.column_stack([matchups, outcomes])
unique_matches, weights = np.unique(unique_matches, return_counts=True, axis=0)
return (unique_matches[:, :2].astype(np.int32), unique_matches[:, 2], list(all_models), weights.astype(np.float64))
def bt_loss_and_grad(
ratings: np.ndarray, matchups: np.ndarray, outcomes: np.ndarray, weights: np.ndarray, alpha: float = 1.0
) -> Tuple[float, np.ndarray]:
"""Compute Bradley-Terry loss and gradient."""
matchup_ratings = ratings[matchups]
logits = alpha * (matchup_ratings[:, 0] - matchup_ratings[:, 1])
probs = expit(logits)
loss = -((np.log(probs) * outcomes + np.log(1.0 - probs) * (1.0 - outcomes)) * weights).sum()
matchups_grads = -alpha * (outcomes - probs) * weights
model_grad = np.zeros_like(ratings)
np.add.at(model_grad, matchups[:, [0, 1]], matchups_grads[:, None] * np.array([1.0, -1.0], dtype=np.float64))
return loss, model_grad
def fit_bt(
matchups: np.ndarray, outcomes: np.ndarray, weights: np.ndarray, n_models: int, alpha: float, tol: float = 1e-6
) -> np.ndarray:
"""Fit Bradley-Terry model using L-BFGS-B optimization."""
initial_ratings = np.zeros(n_models, dtype=np.float64)
result = minimize(
fun=bt_loss_and_grad,
x0=initial_ratings,
args=(matchups, outcomes, weights, alpha),
jac=True,
method="L-BFGS-B",
options={"disp": False, "maxiter": 100, "gtol": tol},
)
return result["x"]
def scale_and_offset(
ratings: np.ndarray, models: List[str], scale: float = 400, init_rating: float = 1000
) -> np.ndarray:
"""Scale ratings to familiar Elo-like scale."""
scaled_ratings = (ratings * scale) + init_rating
return scaled_ratings
def compute_bootstrap_bt(
data: str,
num_round: int = 100,
base: float = 10.0,
scale: float = 400.0,
init_rating: float = 1000.0,
tol: float = 1e-6,
) -> pd.DataFrame:
"""Compute bootstrap Bradley-Terry ratings from live votes data."""
df = load_live_votes(data)
matchups, outcomes, models, weights = preprocess_for_bt(df)
rng = np.random.default_rng(seed=0)
total_matches = len(df)
idxs = rng.multinomial(n=total_matches, pvals=weights / weights.sum(), size=num_round)
boot_weights = idxs.astype(np.float64) / total_matches
ratings_list = []
for sample_weights in boot_weights:
ratings = fit_bt(
matchups=matchups,
outcomes=outcomes,
weights=sample_weights,
n_models=len(models),
alpha=np.log(base),
tol=tol,
)
scaled_ratings = scale_and_offset(ratings=ratings, models=models, scale=scale, init_rating=init_rating)
ratings_list.append(scaled_ratings)
df_ratings = pd.DataFrame(ratings_list, columns=models)
return df_ratings[df_ratings.median().sort_values(ascending=False).index]
def create_bt_plot(bootstrap_ratings):
"""Create Bradley-Terry ratings plot using Plotly."""
melted_bootstrap = bootstrap_ratings.melt(id_vars=["Source", "level_1"], var_name="Model", value_name="BT")
melted_bootstrap = melted_bootstrap.dropna()
melted_bootstrap = melted_bootstrap.sort_values(by=["Source", "Model", "BT"], ascending=False)
# Pretty Names
melted_bootstrap["Model"] = melted_bootstrap["Model"].apply(lambda x: NAME_MAPPING.get(x, x))
# Compression for Client Side
melted_bootstrap["BT"] = melted_bootstrap["BT"].apply(lambda x: int(x))
min_samp = melted_bootstrap[melted_bootstrap["BT"] > 0]["BT"].min()
max_samp = melted_bootstrap["BT"].max()
idx_keep = list(range(0, len(melted_bootstrap), 10))
melted_bootstrap = melted_bootstrap.iloc[idx_keep]
melted_bootstrap = melted_bootstrap.sort_values(by=["Source", "BT"], ascending=False)
fig = px.violin(
melted_bootstrap,
x="Model",
y="BT",
color="Model",
animation_group="Model",
animation_frame="Source",
color_discrete_sequence=COLORS,
)
fig.update_layout(
autosize=True,
showlegend=False,
plot_bgcolor="white",
title={
"text": "Talk Arena Live Bradley-Terry Ratings<br>with Bootstrapped Variance",
"y": 0.9,
"x": 0.5,
"xanchor": "center",
"yanchor": "top",
},
xaxis_title="Model",
yaxis_title="Rating",
yaxis=dict(gridcolor="#C9CCD1", range=[min_samp - 10, max_samp + 10], griddash="dash"),
legend=dict(
orientation="h", # Make legend horizontal
yanchor="bottom",
y=-0.5, # Position below plot
xanchor="center",
x=0.5, # Center horizontally
bgcolor="rgba(255, 255, 255, 0.8)",
bordercolor="#C9CCD1",
borderwidth=1,
),
margin=dict(l=10, r=10, t=0, b=10), # Balanced margins
)
fig.update_xaxes(showgrid=False)
fig.update_yaxes(showgrid=True, gridwidth=2)
return fig
def get_wr_plot():
jrep = json.loads(pio.to_json(WR_PLOT))
for step in jrep["layout"]["sliders"][0]["steps"]:
step["args"][1]["frame"]["duration"] = 500
step["args"][1]["transition"]["duration"] = 500
jrep["layout"]["updatemenus"] = []
jrep["layout"]["sliders"][0]["len"] = 0.8
jrep["layout"]["sliders"][0]["pad"] = {}
return json.dumps(jrep)
def get_bt_plot():
jrep = json.loads(pio.to_json(BT_PLOT))
for step in jrep["layout"]["sliders"][0]["steps"]:
step["args"][1]["frame"]["duration"] = 500
step["args"][1]["transition"]["duration"] = 500
jrep["layout"]["updatemenus"] = []
jrep["layout"]["sliders"][0]["len"] = 0.8
jrep["layout"]["sliders"][0]["pad"] = {}
return json.dumps(jrep)
def get_update_time():
return UPDATE_TIME
def viz_factory(force=False):
def process_and_visualize():
"""Main function to process JSON data and create visualizations."""
global WR_PLOT, BT_PLOT, UPDATE_TIME
if WR_PLOT is not None and BT_PLOT is not None and not force:
return WR_PLOT, BT_PLOT, UPDATE_TIME
try:
# Read JSON data
pub_json_data = open("/home/wheld3/talk-arena/live_votes.json", "r").read()
prolific_json_data = open("/home/wheld3/talk-arena/prolific_votes.json", "r").read()
merged_json_data = json.dumps(
{"_default": {**json.loads(pub_json_data)["_default"], **json.loads(prolific_json_data)["_default"]}}
)
# Calculate win rates and create win rate plot
pub_win_rates, pub_votes = calculate_win_rates(pub_json_data)
pro_win_rates, pro_votes = calculate_win_rates(prolific_json_data)
total_win_rates, total_votes = calculate_win_rates(merged_json_data)
all_models = total_win_rates["model"].unique()
pro_models = pro_win_rates["model"].unique()
for model in all_models:
if model not in pro_models:
new_index = len(pro_win_rates)
pro_win_rates.loc[new_index] = [model, -0.1, -0.1, -0.2]
win_rates = (
pd.concat([pub_win_rates, pro_win_rates, total_win_rates], keys=["Public", "Prolific", "Total"])
.reset_index()
.rename(columns={"level_0": "Source"})
)
WR_PLOT = create_win_rate_plot(win_rates)
# Calculate Bradley-Terry ratings and create BT plot
pub_bootstrap_ratings = compute_bootstrap_bt(pub_json_data, num_round=10000)
pro_bootstrap_ratings = compute_bootstrap_bt(prolific_json_data, num_round=10000)
total_bootstrap_ratings = compute_bootstrap_bt(merged_json_data, num_round=10000)
for model in all_models:
if model not in pro_models:
pro_bootstrap_ratings[model] = pro_bootstrap_ratings["diva_3_8b"] * -1
bootstrap_ratings = (
pd.concat(
[pub_bootstrap_ratings, pro_bootstrap_ratings, total_bootstrap_ratings],
keys=["Public", "Prolific", "Total"],
)
.reset_index()
.rename(columns={"level_0": "Source"})
)
BT_PLOT = create_bt_plot(bootstrap_ratings)
UPDATE_TIME = gr.Markdown(
value=textwrap.dedent(
f"""
<h4 class="nx-font-semibold nx-tracking-tight nx-text-slate-900 dark:nx-text-slate-100 nx-text-xl">Last Refresh: {get_aesthetic_timestamp()} PST</h4>
<h6 class="nx-font-semibold nx-tracking-tight nx-text-slate-900 dark:nx-text-slate-100 nx-text-base">Total Votes: {total_votes}, Public Votes: {pub_votes}, Prolific Votes: {pro_votes}</h6>
"""
)
)
return WR_PLOT, BT_PLOT, UPDATE_TIME
except Exception as e:
raise gr.Error(f"Error processing file: {str(e)}")
return process_and_visualize
theme = gr.themes.Soft(
primary_hue=gr.themes.Color(
c100="#82000019",
c200="#82000033",
c300="#8200004c",
c400="#82000066",
c50="#8200007f",
c500="#8200007f",
c600="#82000099",
c700="#820000b2",
c800="#820000cc",
c900="#820000e5",
c950="#820000f2",
),
secondary_hue="rose",
neutral_hue="stone",
)
# Create Gradio interface
with gr.Blocks(title="Talk Arena Leaderboard Analysis", theme=theme) as demo:
viz_factory(force=True)()
last_updated = UPDATE_TIME
with gr.Row():
bt_plot = gr.Plot(label="Bradley-Terry Ratings", value=BT_PLOT)
with gr.Row():
win_rate_plot = gr.Plot(label="Win Rates", value=WR_PLOT)
d1 = gr.Textbox(visible=False)
demo.load(
fn=viz_factory(force=False), inputs=[], outputs=[win_rate_plot, bt_plot, last_updated], show_progress="minimal"
)
demo.load(fn=get_wr_plot, inputs=[], outputs=[d1])
demo.load(fn=get_bt_plot, inputs=[], outputs=[d1])
demo.load(fn=get_update_time, inputs=[], outputs=[d1])
if __name__ == "__main__":
scheduler = BackgroundScheduler()
scheduler.add_job(func=viz_factory(force=True), trigger="interval", seconds=300)
scheduler.start()
demo.queue(default_concurrency_limit=10, api_open=True).launch(share=True, server_port=8004, node_port=8005)
|