|
import os |
|
import cv2 |
|
import json |
|
import random |
|
import glob |
|
import torch |
|
import einops |
|
import numpy as np |
|
import datetime |
|
import torchvision |
|
|
|
import safetensors.torch as sf |
|
from PIL import Image |
|
|
|
|
|
def min_resize(x, m): |
|
if x.shape[0] < x.shape[1]: |
|
s0 = m |
|
s1 = int(float(m) / float(x.shape[0]) * float(x.shape[1])) |
|
else: |
|
s0 = int(float(m) / float(x.shape[1]) * float(x.shape[0])) |
|
s1 = m |
|
new_max = max(s1, s0) |
|
raw_max = max(x.shape[0], x.shape[1]) |
|
if new_max < raw_max: |
|
interpolation = cv2.INTER_AREA |
|
else: |
|
interpolation = cv2.INTER_LANCZOS4 |
|
y = cv2.resize(x, (s1, s0), interpolation=interpolation) |
|
return y |
|
|
|
|
|
def d_resize(x, y): |
|
H, W, C = y.shape |
|
new_min = min(H, W) |
|
raw_min = min(x.shape[0], x.shape[1]) |
|
if new_min < raw_min: |
|
interpolation = cv2.INTER_AREA |
|
else: |
|
interpolation = cv2.INTER_LANCZOS4 |
|
y = cv2.resize(x, (W, H), interpolation=interpolation) |
|
return y |
|
|
|
|
|
def resize_and_center_crop(image, target_width, target_height): |
|
if target_height == image.shape[0] and target_width == image.shape[1]: |
|
return image |
|
|
|
pil_image = Image.fromarray(image) |
|
original_width, original_height = pil_image.size |
|
scale_factor = max(target_width / original_width, target_height / original_height) |
|
resized_width = int(round(original_width * scale_factor)) |
|
resized_height = int(round(original_height * scale_factor)) |
|
resized_image = pil_image.resize((resized_width, resized_height), Image.LANCZOS) |
|
left = (resized_width - target_width) / 2 |
|
top = (resized_height - target_height) / 2 |
|
right = (resized_width + target_width) / 2 |
|
bottom = (resized_height + target_height) / 2 |
|
cropped_image = resized_image.crop((left, top, right, bottom)) |
|
return np.array(cropped_image) |
|
|
|
|
|
def resize_and_center_crop_pytorch(image, target_width, target_height): |
|
B, C, H, W = image.shape |
|
|
|
if H == target_height and W == target_width: |
|
return image |
|
|
|
scale_factor = max(target_width / W, target_height / H) |
|
resized_width = int(round(W * scale_factor)) |
|
resized_height = int(round(H * scale_factor)) |
|
|
|
resized = torch.nn.functional.interpolate(image, size=(resized_height, resized_width), mode='bilinear', align_corners=False) |
|
|
|
top = (resized_height - target_height) // 2 |
|
left = (resized_width - target_width) // 2 |
|
cropped = resized[:, :, top:top + target_height, left:left + target_width] |
|
|
|
return cropped |
|
|
|
|
|
def resize_without_crop(image, target_width, target_height): |
|
if target_height == image.shape[0] and target_width == image.shape[1]: |
|
return image |
|
|
|
pil_image = Image.fromarray(image) |
|
resized_image = pil_image.resize((target_width, target_height), Image.LANCZOS) |
|
return np.array(resized_image) |
|
|
|
|
|
def just_crop(image, w, h): |
|
if h == image.shape[0] and w == image.shape[1]: |
|
return image |
|
|
|
original_height, original_width = image.shape[:2] |
|
k = min(original_height / h, original_width / w) |
|
new_width = int(round(w * k)) |
|
new_height = int(round(h * k)) |
|
x_start = (original_width - new_width) // 2 |
|
y_start = (original_height - new_height) // 2 |
|
cropped_image = image[y_start:y_start + new_height, x_start:x_start + new_width] |
|
return cropped_image |
|
|
|
|
|
def write_to_json(data, file_path): |
|
temp_file_path = file_path + ".tmp" |
|
with open(temp_file_path, 'wt', encoding='utf-8') as temp_file: |
|
json.dump(data, temp_file, indent=4) |
|
os.replace(temp_file_path, file_path) |
|
return |
|
|
|
|
|
def read_from_json(file_path): |
|
with open(file_path, 'rt', encoding='utf-8') as file: |
|
data = json.load(file) |
|
return data |
|
|
|
|
|
def get_active_parameters(m): |
|
return {k: v for k, v in m.named_parameters() if v.requires_grad} |
|
|
|
|
|
def cast_training_params(m, dtype=torch.float32): |
|
result = {} |
|
for n, param in m.named_parameters(): |
|
if param.requires_grad: |
|
param.data = param.to(dtype) |
|
result[n] = param |
|
return result |
|
|
|
|
|
def separate_lora_AB(parameters, B_patterns=None): |
|
parameters_normal = {} |
|
parameters_B = {} |
|
|
|
if B_patterns is None: |
|
B_patterns = ['.lora_B.', '__zero__'] |
|
|
|
for k, v in parameters.items(): |
|
if any(B_pattern in k for B_pattern in B_patterns): |
|
parameters_B[k] = v |
|
else: |
|
parameters_normal[k] = v |
|
|
|
return parameters_normal, parameters_B |
|
|
|
|
|
def set_attr_recursive(obj, attr, value): |
|
attrs = attr.split(".") |
|
for name in attrs[:-1]: |
|
obj = getattr(obj, name) |
|
setattr(obj, attrs[-1], value) |
|
return |
|
|
|
|
|
def print_tensor_list_size(tensors): |
|
total_size = 0 |
|
total_elements = 0 |
|
|
|
if isinstance(tensors, dict): |
|
tensors = tensors.values() |
|
|
|
for tensor in tensors: |
|
total_size += tensor.nelement() * tensor.element_size() |
|
total_elements += tensor.nelement() |
|
|
|
total_size_MB = total_size / (1024 ** 2) |
|
total_elements_B = total_elements / 1e9 |
|
|
|
print(f"Total number of tensors: {len(tensors)}") |
|
print(f"Total size of tensors: {total_size_MB:.2f} MB") |
|
print(f"Total number of parameters: {total_elements_B:.3f} billion") |
|
return |
|
|
|
|
|
@torch.no_grad() |
|
def batch_mixture(a, b=None, probability_a=0.5, mask_a=None): |
|
batch_size = a.size(0) |
|
|
|
if b is None: |
|
b = torch.zeros_like(a) |
|
|
|
if mask_a is None: |
|
mask_a = torch.rand(batch_size) < probability_a |
|
|
|
mask_a = mask_a.to(a.device) |
|
mask_a = mask_a.reshape((batch_size,) + (1,) * (a.dim() - 1)) |
|
result = torch.where(mask_a, a, b) |
|
return result |
|
|
|
|
|
@torch.no_grad() |
|
def zero_module(module): |
|
for p in module.parameters(): |
|
p.detach().zero_() |
|
return module |
|
|
|
|
|
@torch.no_grad() |
|
def supress_lower_channels(m, k, alpha=0.01): |
|
data = m.weight.data.clone() |
|
|
|
assert int(data.shape[1]) >= k |
|
|
|
data[:, :k] = data[:, :k] * alpha |
|
m.weight.data = data.contiguous().clone() |
|
return m |
|
|
|
|
|
def freeze_module(m): |
|
if not hasattr(m, '_forward_inside_frozen_module'): |
|
m._forward_inside_frozen_module = m.forward |
|
m.requires_grad_(False) |
|
m.forward = torch.no_grad()(m.forward) |
|
return m |
|
|
|
|
|
def get_latest_safetensors(folder_path): |
|
safetensors_files = glob.glob(os.path.join(folder_path, '*.safetensors')) |
|
|
|
if not safetensors_files: |
|
raise ValueError('No file to resume!') |
|
|
|
latest_file = max(safetensors_files, key=os.path.getmtime) |
|
latest_file = os.path.abspath(os.path.realpath(latest_file)) |
|
return latest_file |
|
|
|
|
|
def generate_random_prompt_from_tags(tags_str, min_length=3, max_length=32): |
|
tags = tags_str.split(', ') |
|
tags = random.sample(tags, k=min(random.randint(min_length, max_length), len(tags))) |
|
prompt = ', '.join(tags) |
|
return prompt |
|
|
|
|
|
def interpolate_numbers(a, b, n, round_to_int=False, gamma=1.0): |
|
numbers = a + (b - a) * (np.linspace(0, 1, n) ** gamma) |
|
if round_to_int: |
|
numbers = np.round(numbers).astype(int) |
|
return numbers.tolist() |
|
|
|
|
|
def uniform_random_by_intervals(inclusive, exclusive, n, round_to_int=False): |
|
edges = np.linspace(0, 1, n + 1) |
|
points = np.random.uniform(edges[:-1], edges[1:]) |
|
numbers = inclusive + (exclusive - inclusive) * points |
|
if round_to_int: |
|
numbers = np.round(numbers).astype(int) |
|
return numbers.tolist() |
|
|
|
|
|
def soft_append_bcthw(history, current, overlap=0): |
|
if overlap <= 0: |
|
return torch.cat([history, current], dim=2) |
|
|
|
assert history.shape[2] >= overlap, f"History length ({history.shape[2]}) must be >= overlap ({overlap})" |
|
assert current.shape[2] >= overlap, f"Current length ({current.shape[2]}) must be >= overlap ({overlap})" |
|
|
|
weights = torch.linspace(1, 0, overlap, dtype=history.dtype, device=history.device).view(1, 1, -1, 1, 1) |
|
blended = weights * history[:, :, -overlap:] + (1 - weights) * current[:, :, :overlap] |
|
output = torch.cat([history[:, :, :-overlap], blended, current[:, :, overlap:]], dim=2) |
|
|
|
return output.to(history) |
|
|
|
|
|
def save_bcthw_as_mp4(x, output_filename, fps=10): |
|
b, c, t, h, w = x.shape |
|
|
|
per_row = b |
|
for p in [6, 5, 4, 3, 2]: |
|
if b % p == 0: |
|
per_row = p |
|
break |
|
|
|
os.makedirs(os.path.dirname(os.path.abspath(os.path.realpath(output_filename))), exist_ok=True) |
|
x = torch.clamp(x.float(), -1., 1.) * 127.5 + 127.5 |
|
x = x.detach().cpu().to(torch.uint8) |
|
x = einops.rearrange(x, '(m n) c t h w -> t (m h) (n w) c', n=per_row) |
|
torchvision.io.write_video(output_filename, x, fps=fps, video_codec='libx264', options={'crf': '0'}) |
|
return x |
|
|
|
|
|
def save_bcthw_as_png(x, output_filename): |
|
os.makedirs(os.path.dirname(os.path.abspath(os.path.realpath(output_filename))), exist_ok=True) |
|
x = torch.clamp(x.float(), -1., 1.) * 127.5 + 127.5 |
|
x = x.detach().cpu().to(torch.uint8) |
|
x = einops.rearrange(x, 'b c t h w -> c (b h) (t w)') |
|
torchvision.io.write_png(x, output_filename) |
|
return output_filename |
|
|
|
|
|
def save_bchw_as_png(x, output_filename): |
|
os.makedirs(os.path.dirname(os.path.abspath(os.path.realpath(output_filename))), exist_ok=True) |
|
x = torch.clamp(x.float(), -1., 1.) * 127.5 + 127.5 |
|
x = x.detach().cpu().to(torch.uint8) |
|
x = einops.rearrange(x, 'b c h w -> c h (b w)') |
|
torchvision.io.write_png(x, output_filename) |
|
return output_filename |
|
|
|
|
|
def add_tensors_with_padding(tensor1, tensor2): |
|
if tensor1.shape == tensor2.shape: |
|
return tensor1 + tensor2 |
|
|
|
shape1 = tensor1.shape |
|
shape2 = tensor2.shape |
|
|
|
new_shape = tuple(max(s1, s2) for s1, s2 in zip(shape1, shape2)) |
|
|
|
padded_tensor1 = torch.zeros(new_shape) |
|
padded_tensor2 = torch.zeros(new_shape) |
|
|
|
padded_tensor1[tuple(slice(0, s) for s in shape1)] = tensor1 |
|
padded_tensor2[tuple(slice(0, s) for s in shape2)] = tensor2 |
|
|
|
result = padded_tensor1 + padded_tensor2 |
|
return result |
|
|
|
|
|
def print_free_mem(): |
|
torch.cuda.empty_cache() |
|
free_mem, total_mem = torch.cuda.mem_get_info(0) |
|
free_mem_mb = free_mem / (1024 ** 2) |
|
total_mem_mb = total_mem / (1024 ** 2) |
|
print(f"Free memory: {free_mem_mb:.2f} MB") |
|
print(f"Total memory: {total_mem_mb:.2f} MB") |
|
return |
|
|
|
|
|
def print_gpu_parameters(device, state_dict, log_count=1): |
|
summary = {"device": device, "keys_count": len(state_dict)} |
|
|
|
logged_params = {} |
|
for i, (key, tensor) in enumerate(state_dict.items()): |
|
if i >= log_count: |
|
break |
|
logged_params[key] = tensor.flatten()[:3].tolist() |
|
|
|
summary["params"] = logged_params |
|
|
|
print(str(summary)) |
|
return |
|
|
|
|
|
def visualize_txt_as_img(width, height, text, font_path='font/DejaVuSans.ttf', size=18): |
|
from PIL import Image, ImageDraw, ImageFont |
|
|
|
txt = Image.new("RGB", (width, height), color="white") |
|
draw = ImageDraw.Draw(txt) |
|
font = ImageFont.truetype(font_path, size=size) |
|
|
|
if text == '': |
|
return np.array(txt) |
|
|
|
|
|
lines = [] |
|
words = text.split() |
|
current_line = words[0] |
|
|
|
for word in words[1:]: |
|
line_with_word = f"{current_line} {word}" |
|
if draw.textbbox((0, 0), line_with_word, font=font)[2] <= width: |
|
current_line = line_with_word |
|
else: |
|
lines.append(current_line) |
|
current_line = word |
|
|
|
lines.append(current_line) |
|
|
|
|
|
y = 0 |
|
line_height = draw.textbbox((0, 0), "A", font=font)[3] |
|
|
|
for line in lines: |
|
if y + line_height > height: |
|
break |
|
draw.text((0, y), line, fill="black", font=font) |
|
y += line_height |
|
|
|
return np.array(txt) |
|
|
|
|
|
def blue_mark(x): |
|
x = x.copy() |
|
c = x[:, :, 2] |
|
b = cv2.blur(c, (9, 9)) |
|
x[:, :, 2] = ((c - b) * 16.0 + b).clip(-1, 1) |
|
return x |
|
|
|
|
|
def green_mark(x): |
|
x = x.copy() |
|
x[:, :, 2] = -1 |
|
x[:, :, 0] = -1 |
|
return x |
|
|
|
|
|
def frame_mark(x): |
|
x = x.copy() |
|
x[:64] = -1 |
|
x[-64:] = -1 |
|
x[:, :8] = 1 |
|
x[:, -8:] = 1 |
|
return x |
|
|
|
|
|
@torch.inference_mode() |
|
def pytorch2numpy(imgs): |
|
results = [] |
|
for x in imgs: |
|
y = x.movedim(0, -1) |
|
y = y * 127.5 + 127.5 |
|
y = y.detach().float().cpu().numpy().clip(0, 255).astype(np.uint8) |
|
results.append(y) |
|
return results |
|
|
|
|
|
@torch.inference_mode() |
|
def numpy2pytorch(imgs): |
|
h = torch.from_numpy(np.stack(imgs, axis=0)).float() / 127.5 - 1.0 |
|
h = h.movedim(-1, 1) |
|
return h |
|
|
|
|
|
@torch.no_grad() |
|
def duplicate_prefix_to_suffix(x, count, zero_out=False): |
|
if zero_out: |
|
return torch.cat([x, torch.zeros_like(x[:count])], dim=0) |
|
else: |
|
return torch.cat([x, x[:count]], dim=0) |
|
|
|
|
|
def weighted_mse(a, b, weight): |
|
return torch.mean(weight.float() * (a.float() - b.float()) ** 2) |
|
|
|
|
|
def clamped_linear_interpolation(x, x_min, y_min, x_max, y_max, sigma=1.0): |
|
x = (x - x_min) / (x_max - x_min) |
|
x = max(0.0, min(x, 1.0)) |
|
x = x ** sigma |
|
return y_min + x * (y_max - y_min) |
|
|
|
|
|
def expand_to_dims(x, target_dims): |
|
return x.view(*x.shape, *([1] * max(0, target_dims - x.dim()))) |
|
|
|
|
|
def repeat_to_batch_size(tensor: torch.Tensor, batch_size: int): |
|
if tensor is None: |
|
return None |
|
|
|
first_dim = tensor.shape[0] |
|
|
|
if first_dim == batch_size: |
|
return tensor |
|
|
|
if batch_size % first_dim != 0: |
|
raise ValueError(f"Cannot evenly repeat first dim {first_dim} to match batch_size {batch_size}.") |
|
|
|
repeat_times = batch_size // first_dim |
|
|
|
return tensor.repeat(repeat_times, *[1] * (tensor.dim() - 1)) |
|
|
|
|
|
def dim5(x): |
|
return expand_to_dims(x, 5) |
|
|
|
|
|
def dim4(x): |
|
return expand_to_dims(x, 4) |
|
|
|
|
|
def dim3(x): |
|
return expand_to_dims(x, 3) |
|
|
|
|
|
def crop_or_pad_yield_mask(x, length): |
|
B, F, C = x.shape |
|
device = x.device |
|
dtype = x.dtype |
|
|
|
if F < length: |
|
y = torch.zeros((B, length, C), dtype=dtype, device=device) |
|
mask = torch.zeros((B, length), dtype=torch.bool, device=device) |
|
y[:, :F, :] = x |
|
mask[:, :F] = True |
|
return y, mask |
|
|
|
return x[:, :length, :], torch.ones((B, length), dtype=torch.bool, device=device) |
|
|
|
|
|
def extend_dim(x, dim, minimal_length, zero_pad=False): |
|
original_length = int(x.shape[dim]) |
|
|
|
if original_length >= minimal_length: |
|
return x |
|
|
|
if zero_pad: |
|
padding_shape = list(x.shape) |
|
padding_shape[dim] = minimal_length - original_length |
|
padding = torch.zeros(padding_shape, dtype=x.dtype, device=x.device) |
|
else: |
|
idx = (slice(None),) * dim + (slice(-1, None),) + (slice(None),) * (len(x.shape) - dim - 1) |
|
last_element = x[idx] |
|
padding = last_element.repeat_interleave(minimal_length - original_length, dim=dim) |
|
|
|
return torch.cat([x, padding], dim=dim) |
|
|
|
|
|
def lazy_positional_encoding(t, repeats=None): |
|
if not isinstance(t, list): |
|
t = [t] |
|
|
|
from diffusers.models.embeddings import get_timestep_embedding |
|
|
|
te = torch.tensor(t) |
|
te = get_timestep_embedding(timesteps=te, embedding_dim=256, flip_sin_to_cos=True, downscale_freq_shift=0.0, scale=1.0) |
|
|
|
if repeats is None: |
|
return te |
|
|
|
te = te[:, None, :].expand(-1, repeats, -1) |
|
|
|
return te |
|
|
|
|
|
def state_dict_offset_merge(A, B, C=None): |
|
result = {} |
|
keys = A.keys() |
|
|
|
for key in keys: |
|
A_value = A[key] |
|
B_value = B[key].to(A_value) |
|
|
|
if C is None: |
|
result[key] = A_value + B_value |
|
else: |
|
C_value = C[key].to(A_value) |
|
result[key] = A_value + B_value - C_value |
|
|
|
return result |
|
|
|
|
|
def state_dict_weighted_merge(state_dicts, weights): |
|
if len(state_dicts) != len(weights): |
|
raise ValueError("Number of state dictionaries must match number of weights") |
|
|
|
if not state_dicts: |
|
return {} |
|
|
|
total_weight = sum(weights) |
|
|
|
if total_weight == 0: |
|
raise ValueError("Sum of weights cannot be zero") |
|
|
|
normalized_weights = [w / total_weight for w in weights] |
|
|
|
keys = state_dicts[0].keys() |
|
result = {} |
|
|
|
for key in keys: |
|
result[key] = state_dicts[0][key] * normalized_weights[0] |
|
|
|
for i in range(1, len(state_dicts)): |
|
state_dict_value = state_dicts[i][key].to(result[key]) |
|
result[key] += state_dict_value * normalized_weights[i] |
|
|
|
return result |
|
|
|
|
|
def group_files_by_folder(all_files): |
|
grouped_files = {} |
|
|
|
for file in all_files: |
|
folder_name = os.path.basename(os.path.dirname(file)) |
|
if folder_name not in grouped_files: |
|
grouped_files[folder_name] = [] |
|
grouped_files[folder_name].append(file) |
|
|
|
list_of_lists = list(grouped_files.values()) |
|
return list_of_lists |
|
|
|
|
|
def generate_timestamp(): |
|
now = datetime.datetime.now() |
|
timestamp = now.strftime('%y%m%d_%H%M%S') |
|
milliseconds = f"{int(now.microsecond / 1000):03d}" |
|
random_number = random.randint(0, 9999) |
|
return f"{timestamp}_{milliseconds}_{random_number}" |
|
|
|
|
|
def write_PIL_image_with_png_info(image, metadata, path): |
|
from PIL.PngImagePlugin import PngInfo |
|
|
|
png_info = PngInfo() |
|
for key, value in metadata.items(): |
|
png_info.add_text(key, value) |
|
|
|
image.save(path, "PNG", pnginfo=png_info) |
|
return image |
|
|
|
|
|
def torch_safe_save(content, path): |
|
torch.save(content, path + '_tmp') |
|
os.replace(path + '_tmp', path) |
|
return path |
|
|
|
|
|
def move_optimizer_to_device(optimizer, device): |
|
for state in optimizer.state.values(): |
|
for k, v in state.items(): |
|
if isinstance(v, torch.Tensor): |
|
state[k] = v.to(device) |
|
|