|
import spaces |
|
import os |
|
|
|
import gradio as gr |
|
import torch |
|
import traceback |
|
import einops |
|
import numpy as np |
|
|
|
from PIL import Image |
|
from diffusers import AutoencoderKLHunyuanVideo |
|
from transformers import LlamaModel, CLIPTextModel, LlamaTokenizerFast, CLIPTokenizer |
|
from diffusers_helper.hunyuan import encode_prompt_conds, vae_decode, vae_encode, vae_decode_fake |
|
from diffusers_helper.utils import save_bcthw_as_mp4, crop_or_pad_yield_mask, soft_append_bcthw, resize_and_center_crop, generate_timestamp |
|
from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked |
|
from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan |
|
from diffusers_helper.memory import cpu, gpu, move_model_to_device_with_memory_preservation, offload_model_from_device_for_memory_preservation, fake_diffusers_current_device, DynamicSwapInstaller, unload_complete_models, load_model_as_complete |
|
from diffusers_helper.thread_utils import AsyncStream, async_run |
|
from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html |
|
from transformers import SiglipImageProcessor, SiglipVisionModel |
|
from diffusers_helper.clip_vision import hf_clip_vision_encode |
|
from diffusers_helper.bucket_tools import find_nearest_bucket |
|
|
|
|
|
text_encoder = LlamaModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder', torch_dtype=torch.float16).cpu() |
|
text_encoder_2 = CLIPTextModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder_2', torch_dtype=torch.float16).cpu() |
|
tokenizer = LlamaTokenizerFast.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer') |
|
tokenizer_2 = CLIPTokenizer.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer_2') |
|
vae = AutoencoderKLHunyuanVideo.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='vae', torch_dtype=torch.float16).cpu() |
|
|
|
feature_extractor = SiglipImageProcessor.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='feature_extractor') |
|
image_encoder = SiglipVisionModel.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='image_encoder', torch_dtype=torch.float16).cpu() |
|
|
|
transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained('lllyasviel/FramePackI2V_HY', torch_dtype=torch.bfloat16).cpu() |
|
|
|
vae.eval() |
|
text_encoder.eval() |
|
text_encoder_2.eval() |
|
image_encoder.eval() |
|
transformer.eval() |
|
|
|
vae.enable_slicing() |
|
vae.enable_tiling() |
|
|
|
transformer.high_quality_fp32_output_for_inference = True |
|
print('transformer.high_quality_fp32_output_for_inference = True') |
|
|
|
transformer.to(dtype=torch.bfloat16) |
|
vae.to(dtype=torch.float16) |
|
image_encoder.to(dtype=torch.float16) |
|
text_encoder.to(dtype=torch.float16) |
|
text_encoder_2.to(dtype=torch.float16) |
|
|
|
vae.requires_grad_(False) |
|
text_encoder.requires_grad_(False) |
|
text_encoder_2.requires_grad_(False) |
|
image_encoder.requires_grad_(False) |
|
transformer.requires_grad_(False) |
|
|
|
DynamicSwapInstaller.install_model(transformer, device=gpu) |
|
DynamicSwapInstaller.install_model(text_encoder, device=gpu) |
|
|
|
stream = AsyncStream() |
|
|
|
outputs_folder = './outputs/' |
|
os.makedirs(outputs_folder, exist_ok=True) |
|
|
|
|
|
@torch.no_grad() |
|
def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache): |
|
total_latent_sections = (total_second_length * 30) / (latent_window_size * 4) |
|
total_latent_sections = int(max(round(total_latent_sections), 1)) |
|
|
|
job_id = generate_timestamp() |
|
|
|
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...')))) |
|
|
|
try: |
|
unload_complete_models( |
|
text_encoder, text_encoder_2, image_encoder, vae, transformer |
|
) |
|
|
|
|
|
|
|
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding ...')))) |
|
|
|
fake_diffusers_current_device(text_encoder, gpu) |
|
load_model_as_complete(text_encoder_2, target_device=gpu) |
|
|
|
llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2) |
|
|
|
if cfg == 1: |
|
llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler) |
|
else: |
|
llama_vec_n, clip_l_pooler_n = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2) |
|
|
|
llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512) |
|
llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512) |
|
|
|
|
|
|
|
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Image processing ...')))) |
|
|
|
H, W, C = input_image.shape |
|
height, width = find_nearest_bucket(H, W, resolution=640) |
|
input_image_np = resize_and_center_crop(input_image, target_width=width, target_height=height) |
|
|
|
Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png')) |
|
|
|
input_image_pt = torch.from_numpy(input_image_np).float() / 127.5 - 1 |
|
input_image_pt = input_image_pt.permute(2, 0, 1)[None, :, None] |
|
|
|
|
|
|
|
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'VAE encoding ...')))) |
|
|
|
load_model_as_complete(vae, target_device=gpu) |
|
|
|
start_latent = vae_encode(input_image_pt, vae) |
|
|
|
|
|
|
|
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...')))) |
|
|
|
load_model_as_complete(image_encoder, target_device=gpu) |
|
|
|
image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder) |
|
image_encoder_last_hidden_state = image_encoder_output.last_hidden_state |
|
|
|
|
|
|
|
llama_vec = llama_vec.to(transformer.dtype) |
|
llama_vec_n = llama_vec_n.to(transformer.dtype) |
|
clip_l_pooler = clip_l_pooler.to(transformer.dtype) |
|
clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype) |
|
image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype) |
|
|
|
|
|
|
|
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling ...')))) |
|
|
|
rnd = torch.Generator("cpu").manual_seed(seed) |
|
num_frames = latent_window_size * 4 - 3 |
|
|
|
history_latents = torch.zeros(size=(1, 16, 1 + 2 + 16, height // 8, width // 8), dtype=torch.float32).cpu() |
|
history_pixels = None |
|
total_generated_latent_frames = 0 |
|
|
|
latent_paddings = reversed(range(total_latent_sections)) |
|
|
|
if total_latent_sections > 4: |
|
|
|
|
|
|
|
|
|
latent_paddings = [3] + [2] * (total_latent_sections - 3) + [1, 0] |
|
|
|
for latent_padding in latent_paddings: |
|
is_last_section = latent_padding == 0 |
|
latent_padding_size = latent_padding * latent_window_size |
|
|
|
if stream.input_queue.top() == 'end': |
|
stream.output_queue.push(('end', None)) |
|
return |
|
|
|
print(f'latent_padding_size = {latent_padding_size}, is_last_section = {is_last_section}') |
|
|
|
indices = torch.arange(0, sum([1, latent_padding_size, latent_window_size, 1, 2, 16])).unsqueeze(0) |
|
clean_latent_indices_pre, blank_indices, latent_indices, clean_latent_indices_post, clean_latent_2x_indices, clean_latent_4x_indices = indices.split([1, latent_padding_size, latent_window_size, 1, 2, 16], dim=1) |
|
clean_latent_indices = torch.cat([clean_latent_indices_pre, clean_latent_indices_post], dim=1) |
|
|
|
clean_latents_pre = start_latent.to(history_latents) |
|
clean_latents_post, clean_latents_2x, clean_latents_4x = history_latents[:, :, :1 + 2 + 16, :, :].split([1, 2, 16], dim=2) |
|
clean_latents = torch.cat([clean_latents_pre, clean_latents_post], dim=2) |
|
|
|
unload_complete_models() |
|
move_model_to_device_with_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=gpu_memory_preservation) |
|
|
|
if use_teacache: |
|
transformer.initialize_teacache(enable_teacache=True, num_steps=steps) |
|
else: |
|
transformer.initialize_teacache(enable_teacache=False) |
|
|
|
def callback(d): |
|
preview = d['denoised'] |
|
preview = vae_decode_fake(preview) |
|
|
|
preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8) |
|
preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c') |
|
|
|
if stream.input_queue.top() == 'end': |
|
stream.output_queue.push(('end', None)) |
|
raise KeyboardInterrupt('User ends the task.') |
|
|
|
current_step = d['i'] + 1 |
|
percentage = int(100.0 * current_step / steps) |
|
hint = f'Sampling {current_step}/{steps}' |
|
desc = f'Total generated frames: {int(max(0, total_generated_latent_frames * 4 - 3))}, Video length: {max(0, (total_generated_latent_frames * 4 - 3) / 30) :.2f} seconds (FPS-30). The video is being extended now ...' |
|
stream.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, hint)))) |
|
return |
|
|
|
generated_latents = sample_hunyuan( |
|
transformer=transformer, |
|
sampler='unipc', |
|
width=width, |
|
height=height, |
|
frames=num_frames, |
|
real_guidance_scale=cfg, |
|
distilled_guidance_scale=gs, |
|
guidance_rescale=rs, |
|
|
|
num_inference_steps=steps, |
|
generator=rnd, |
|
prompt_embeds=llama_vec, |
|
prompt_embeds_mask=llama_attention_mask, |
|
prompt_poolers=clip_l_pooler, |
|
negative_prompt_embeds=llama_vec_n, |
|
negative_prompt_embeds_mask=llama_attention_mask_n, |
|
negative_prompt_poolers=clip_l_pooler_n, |
|
device=gpu, |
|
dtype=torch.bfloat16, |
|
image_embeddings=image_encoder_last_hidden_state, |
|
latent_indices=latent_indices, |
|
clean_latents=clean_latents, |
|
clean_latent_indices=clean_latent_indices, |
|
clean_latents_2x=clean_latents_2x, |
|
clean_latent_2x_indices=clean_latent_2x_indices, |
|
clean_latents_4x=clean_latents_4x, |
|
clean_latent_4x_indices=clean_latent_4x_indices, |
|
callback=callback, |
|
) |
|
|
|
if is_last_section: |
|
generated_latents = torch.cat([start_latent.to(generated_latents), generated_latents], dim=2) |
|
|
|
total_generated_latent_frames += int(generated_latents.shape[2]) |
|
history_latents = torch.cat([generated_latents.to(history_latents), history_latents], dim=2) |
|
|
|
offload_model_from_device_for_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=8) |
|
load_model_as_complete(vae, target_device=gpu) |
|
|
|
real_history_latents = history_latents[:, :, :total_generated_latent_frames, :, :] |
|
|
|
if history_pixels is None: |
|
history_pixels = vae_decode(real_history_latents, vae).cpu() |
|
else: |
|
section_latent_frames = (latent_window_size * 2 + 1) if is_last_section else (latent_window_size * 2) |
|
overlapped_frames = latent_window_size * 4 - 3 |
|
|
|
current_pixels = vae_decode(real_history_latents[:, :, :section_latent_frames], vae).cpu() |
|
history_pixels = soft_append_bcthw(current_pixels, history_pixels, overlapped_frames) |
|
|
|
unload_complete_models() |
|
|
|
output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4') |
|
|
|
save_bcthw_as_mp4(history_pixels, output_filename, fps=30) |
|
|
|
print(f'Decoded. Current latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}') |
|
|
|
stream.output_queue.push(('file', output_filename)) |
|
|
|
if is_last_section: |
|
break |
|
except: |
|
traceback.print_exc() |
|
|
|
unload_complete_models( |
|
text_encoder, text_encoder_2, image_encoder, vae, transformer |
|
) |
|
|
|
stream.output_queue.push(('end', None)) |
|
return |
|
|
|
@spaces.GPU() |
|
def process(input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache): |
|
global stream |
|
assert input_image is not None, 'No input image!' |
|
|
|
yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True) |
|
|
|
stream = AsyncStream() |
|
|
|
async_run(worker, input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache) |
|
|
|
output_filename = None |
|
|
|
while True: |
|
flag, data = stream.output_queue.next() |
|
|
|
if flag == 'file': |
|
output_filename = data |
|
yield output_filename, gr.update(), gr.update(), gr.update(), gr.update(interactive=False), gr.update(interactive=True) |
|
|
|
if flag == 'progress': |
|
preview, desc, html = data |
|
yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True) |
|
|
|
if flag == 'end': |
|
yield output_filename, gr.update(visible=False), gr.update(), '', gr.update(interactive=True), gr.update(interactive=False) |
|
break |
|
|
|
|
|
def end_process(): |
|
stream.input_queue.push('end') |
|
|
|
|
|
quick_prompts = [ |
|
'The girl dances gracefully, with clear movements, full of charm.', |
|
'A character doing some simple body movements.', |
|
] |
|
quick_prompts = [[x] for x in quick_prompts] |
|
|
|
|
|
css = make_progress_bar_css() |
|
block = gr.Blocks(css=css).queue() |
|
with block: |
|
gr.Markdown('# FramePack') |
|
with gr.Row(): |
|
with gr.Column(): |
|
input_image = gr.Image(sources='upload', type="numpy", label="Image", height=320) |
|
prompt = gr.Textbox(label="Prompt", value='') |
|
example_quick_prompts = gr.Dataset(samples=quick_prompts, label='Quick List', samples_per_page=1000, components=[prompt]) |
|
example_quick_prompts.click(lambda x: x[0], inputs=[example_quick_prompts], outputs=prompt, show_progress=False, queue=False) |
|
|
|
with gr.Row(): |
|
start_button = gr.Button(value="Start Generation") |
|
end_button = gr.Button(value="End Generation", interactive=False) |
|
|
|
with gr.Group(): |
|
use_teacache = gr.Checkbox(label='Use TeaCache', value=True, info='Faster speed, but often makes hands and fingers slightly worse.') |
|
|
|
n_prompt = gr.Textbox(label="Negative Prompt", value="", visible=False) |
|
seed = gr.Number(label="Seed", value=31337, precision=0) |
|
|
|
total_second_length = gr.Slider(label="Total Video Length (Seconds)", minimum=1, maximum=120, value=5, step=0.1) |
|
latent_window_size = gr.Slider(label="Latent Window Size", minimum=1, maximum=33, value=9, step=1, visible=False) |
|
steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=25, step=1, info='Changing this value is not recommended.') |
|
|
|
cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=32.0, value=1.0, step=0.01, visible=False) |
|
gs = gr.Slider(label="Distilled CFG Scale", minimum=1.0, maximum=32.0, value=10.0, step=0.01, info='Changing this value is not recommended.') |
|
rs = gr.Slider(label="CFG Re-Scale", minimum=0.0, maximum=1.0, value=0.0, step=0.01, visible=False) |
|
|
|
gpu_memory_preservation = gr.Slider(label="GPU Inference Preserved Memory (GB) (larger means slower)", minimum=6, maximum=128, value=6, step=0.1, info="Set this number to a larger value if you encounter OOM. Larger value causes slower speed.") |
|
|
|
with gr.Column(): |
|
preview_image = gr.Image(label="Next Latents", height=200, visible=False) |
|
result_video = gr.Video(label="Finished Frames", autoplay=True, show_share_button=False, height=512, loop=True) |
|
gr.Markdown('Note that the ending actions will be generated before the starting actions due to the inverted sampling. If the starting action is not in the video, you just need to wait, and it will be generated later.') |
|
progress_desc = gr.Markdown('', elem_classes='no-generating-animation') |
|
progress_bar = gr.HTML('', elem_classes='no-generating-animation') |
|
ips = [input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache] |
|
start_button.click(fn=process, inputs=ips, outputs=[result_video, preview_image, progress_desc, progress_bar, start_button, end_button]) |
|
end_button.click(fn=end_process) |
|
|
|
|
|
block.queue().launch(share=True) |
|
|