from .BaseLLM import BaseLLM import os from openai import OpenAI import tiktoken encoding = tiktoken.encoding_for_model("gpt-4o") class OpenRouter(BaseLLM): def __init__(self, model="deepseek/deepseek-r1:free"): super(OpenRouter, self).__init__() self.client = OpenAI( api_key=os.getenv("OPENROUTER_API_KEY"), base_url="https://openrouter.ai/api/v1", ) self.model_name = model self.messages = [] self.in_token = 0 self.out_token = 0 def initialize_message(self): self.messages = [] def ai_message(self, payload): self.messages.append({"role": "ai", "content": payload}) def system_message(self, payload): self.messages.append({"role": "system", "content": payload}) def user_message(self, payload): self.messages.append({"role": "user", "content": payload}) def get_response(self,temperature = 0.8): completion = self.client.chat.completions.create( model=self.model_name, messages=self.messages ) return completion.choices[0].message.content def chat(self,text,temperature = 0.8): self.initialize_message() self.user_message(text) response = self.get_response(temperature = temperature) print("In",self.count_token(text)) print("Out", self.count_token(response)) self.in_token += self.count_token(text) self.out_token += self.count_token(response) return response def print_prompt(self): for message in self.messages: print(message) def count_token(self,text,): return len(encoding.encode(text))