from .BaseLLM import BaseLLM from peft import PeftModel import os from transformers import AutoModelForCausalLM, AutoTokenizer class LocalModel(BaseLLM): def __init__(self, model, adapter_path = None): super(LocalModel, self).__init__() model_name = model self.model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto", ) if isinstance(adapter_path,str): self.model = PeftModel.from_pretrained(self.model, adapter_path) elif isinstance(adapter_path,list): for path in adapter_path: self.model = PeftModel.from_pretrained(self.model, path) self.tokenizer = AutoTokenizer.from_pretrained(model_name) self.model_name = model self.messages = [] def initialize_message(self): self.messages = [] def ai_message(self, payload): self.messages.append({"role": "ai", "content": payload}) def system_message(self, payload): self.messages.append({"role": "system", "content": payload}) def user_message(self, payload): self.messages.append({"role": "user", "content": payload}) def get_response(self,temperature = 0.8): text = self.tokenizer.apply_chat_template( self.messages, tokenize=False, add_generation_prompt=True ) model_inputs = self.tokenizer([text], return_tensors="pt").to(self.model.device) generated_ids = self.model.generate( **model_inputs, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] return response def chat(self,text,temperature = 0.8): self.initialize_message() self.user_message(text) response = self.get_response(temperature = temperature) return response def print_prompt(self): for message in self.messages: print(message)