from .BaseLLM import BaseLLM from openai import OpenAI import os class DeepSeek(BaseLLM): def __init__(self, model="deepseek-chat"): super(DeepSeek, self).__init__() self.client = OpenAI( api_key=os.getenv("DEEPSEEK_API_KEY"), base_url="https://api.deepseek.com", ) self.model_name = model self.messages = [] def initialize_message(self): self.messages = [] def ai_message(self, payload): self.messages.append({"role": "ai", "content": payload}) def system_message(self, payload): self.messages.append({"role": "system", "content": payload}) def user_message(self, payload): self.messages.append({"role": "user", "content": payload}) def get_response(self,temperature = 0.8): response = self.client.chat.completions.create( model="deepseek-chat", messages=[ {"role": "system", "content": "You are a helpful assistant"}, {"role": "user", "content": "Hello"}, ], stream=False ) return response.choices[0].message.content def chat(self,text): self.initialize_message() self.user_message(text) response = self.get_response() return response def print_prompt(self): for message in self.messages: print(message)