|
from .BaseLLM import BaseLLM |
|
from openai import OpenAI |
|
import os |
|
|
|
class Qwen(BaseLLM): |
|
|
|
def __init__(self, model="qwen-max"): |
|
|
|
super(Qwen, self).__init__() |
|
self.client = OpenAI( |
|
api_key=os.getenv("DASHSCOPE_API_KEY"), |
|
base_url="https://dashscope.aliyuncs.com/compatible-mode/v1", |
|
) |
|
self.model_name = model |
|
|
|
self.messages = [] |
|
|
|
def initialize_message(self): |
|
self.messages = [] |
|
|
|
def ai_message(self, payload): |
|
self.messages.append({"role": "ai", "content": payload}) |
|
|
|
def system_message(self, payload): |
|
self.messages.append({"role": "system", "content": payload}) |
|
|
|
def user_message(self, payload): |
|
self.messages.append({"role": "user", "content": payload}) |
|
|
|
def get_response(self,temperature = 0.8): |
|
|
|
completion = self.client.chat.completions.create( |
|
model=self.model_name, |
|
messages=self.messages, |
|
temperature=temperature, |
|
top_p=0.8 |
|
) |
|
return completion.choices[0].message.content |
|
|
|
def chat(self,text,temperature = 0.8): |
|
self.initialize_message() |
|
self.user_message(text) |
|
response = self.get_response(temperature = temperature) |
|
return response |
|
|
|
def print_prompt(self): |
|
for message in self.messages: |
|
print(message) |