|
from .BaseLLM import BaseLLM |
|
from peft import PeftModel |
|
import os |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
|
|
class LocalModel(BaseLLM): |
|
def __init__(self, model, adapter_path = None): |
|
super(LocalModel, self).__init__() |
|
model_name = model |
|
self.model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
torch_dtype="auto", |
|
device_map="auto", |
|
|
|
) |
|
if isinstance(adapter_path,str): |
|
self.model = PeftModel.from_pretrained(self.model, adapter_path) |
|
elif isinstance(adapter_path,list): |
|
for path in adapter_path: |
|
self.model = PeftModel.from_pretrained(self.model, path) |
|
|
|
self.tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
self.model_name = model |
|
self.messages = [] |
|
|
|
def initialize_message(self): |
|
self.messages = [] |
|
|
|
def ai_message(self, payload): |
|
self.messages.append({"role": "ai", "content": payload}) |
|
|
|
def system_message(self, payload): |
|
self.messages.append({"role": "system", "content": payload}) |
|
|
|
def user_message(self, payload): |
|
self.messages.append({"role": "user", "content": payload}) |
|
|
|
def get_response(self,temperature = 0.8): |
|
|
|
text = self.tokenizer.apply_chat_template( |
|
self.messages, |
|
tokenize=False, |
|
add_generation_prompt=True |
|
) |
|
model_inputs = self.tokenizer([text], return_tensors="pt").to(self.model.device) |
|
generated_ids = self.model.generate( |
|
**model_inputs, |
|
max_new_tokens=512 |
|
) |
|
generated_ids = [ |
|
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) |
|
] |
|
|
|
response = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
return response |
|
|
|
def chat(self,text,temperature = 0.8): |
|
self.initialize_message() |
|
self.user_message(text) |
|
response = self.get_response(temperature = temperature) |
|
return response |
|
|
|
def print_prompt(self): |
|
for message in self.messages: |
|
print(message) |