File size: 15,395 Bytes
e636070 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 |
import os
import pickle
import json
import torch
import logging
import datetime
import re
import random
import base64
MODEL_NAME_DICT = {
"gpt3":"openai/gpt-3.5-turbo",
"gpt-4":"openai/gpt-4",
"gpt-4o":"openai/gpt-4o",
"gpt-4o-mini":"openai/gpt-4o-mini",
"gpt-3.5-turbo":"openai/gpt-3.5-turbo",
"deepseek-r1":"deepseek/deepseek-r1",
"deepseek-v3":"deepseek/deepseek-chat",
"gemini-2":"google/gemini-2.0-flash-001",
"gemini-1.5":"google/gemini-flash-1.5",
"llama3-70b": "meta-llama/llama-3.3-70b-instruct",
"qwen-turbo":"qwen/qwen-turbo",
"qwen-plus":"qwen/qwen-plus",
"qwen-max":"qwen/qwen-max",
"qwen-2.5-72b":"qwen/qwen-2.5-72b-instruct",
"claude-3.5-sonnet":"anthropic/claude-3.5-sonnet",
"phi-4":"microsoft/phi-4",
}
def get_models(model_name):
if os.getenv("OPENROUTER_API_KEY", default="") and model_name in MODEL_NAME_DICT:
from modules.llm.OpenRouter import OpenRouter
return OpenRouter(model=MODEL_NAME_DICT[model_name])
elif model_name.startswith('gpt-3.5'):
from modules.llm.LangChainGPT import LangChainGPT
return LangChainGPT(model="gpt-3.5-turbo")
elif model_name == 'gpt-4':
from modules.llm.LangChainGPT import LangChainGPT
return LangChainGPT(model="gpt-4")
elif model_name == 'gpt-4-turbo':
from modules.llm.LangChainGPT import LangChainGPT
return LangChainGPT(model="gpt-4")
elif model_name == 'gpt-4o':
from modules.llm.LangChainGPT import LangChainGPT
return LangChainGPT(model="gpt-4o")
elif model_name == "gpt-4o-mini":
from modules.llm.LangChainGPT import LangChainGPT
return LangChainGPT(model="gpt-4o-mini")
elif model_name.startswith("claude"):
from modules.llm.LangChainGPT import LangChainGPT
return LangChainGPT(model="claude-3-5-sonnet-20241022")
elif model_name.startswith('qwen'):
from modules.llm.Qwen import Qwen
return Qwen(model = model_name)
elif model_name.startswith('deepseek'):
from modules.llm.DeepSeek import DeepSeek
return DeepSeek()
elif model_name.startswith('doubao'):
from modules.llm.Doubao import Doubao
return Doubao()
elif model_name.startswith('gemini'):
from modules.llm.Gemini import Gemini
return Gemini()
else:
print(f'Warning! undefined model {model_name}, use gpt-3.5-turbo instead.')
from modules.llm.LangChainGPT import LangChainGPT
return LangChainGPT()
def build_world_agent_data(world_file_path,max_words = 30):
world_dir = os.path.dirname(world_file_path)
details_dir = os.path.join(world_dir,"./world_details")
data = []
settings = []
if os.path.exists(details_dir):
for path in get_child_paths(details_dir):
if os.path.splitext(path)[-1] == ".txt":
text = load_text_file(path)
data += split_text_by_max_words(text,max_words)
if os.path.splitext(path)[-1] == ".jsonl":
jsonl = load_jsonl_file(path)
data += [f"{dic['term']}:{dic['detail']}" for dic in jsonl]
settings += jsonl
return data,settings
def build_db(data, db_name, db_type, embedding, save_type="persistent"):
if True:
from modules.db.ChromaDB import ChromaDB
db = ChromaDB(embedding,save_type)
db_name = db_name
db.init_from_data(data,db_name)
return db
def get_root_dir():
current_file_path = os.path.abspath(__file__)
root_dir = os.path.dirname(current_file_path)
return root_dir
def create_dir(dirname):
if not os.path.exists(dirname):
os.makedirs(dirname)
def get_logger(experiment_name):
logger = logging.getLogger(experiment_name)
logger.setLevel(logging.INFO)
current_time = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
create_dir(f"{get_root_dir()}/log/{experiment_name}")
file_handler = logging.FileHandler(os.path.join(get_root_dir(),f"./log/{experiment_name}/{current_time}.log"),encoding='utf-8')
file_handler.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)
# Avoid logging duplication
logger.propagate = False
return logger
def merge_text_with_limit(text_list, max_words, language = 'en'):
"""
Merge a list of text strings into one, stopping when adding another text exceeds the maximum count.
Args:
text_list (list): List of strings to be merged.
max_count (int): Maximum number of characters (for Chinese) or words (for English).
is_chinese (bool): If True, count Chinese characters; if False, count English words.
Returns:
str: The merged text, truncated as needed.
"""
merged_text = ""
current_count = 0
for text in text_list:
if language == 'zh':
# Count Chinese characters
text_length = len(text)
else:
# Count English words
text_length = len(text.split(" "))
if current_count + text_length > max_words:
break
merged_text += text + "\n"
current_count += text_length
return merged_text
def normalize_string(text):
# 去除空格并将所有字母转为小写
import re
return re.sub(r'[\s\,\;\t\n]+', '', text).lower()
def fuzzy_match(str1, str2, threshold=0.8):
str1_normalized = normalize_string(str1)
str2_normalized = normalize_string(str2)
if str1_normalized == str2_normalized:
return True
return False
def load_character_card(path):
from PIL import Image
import PIL.PngImagePlugin
image = Image.open(path)
if isinstance(image, PIL.PngImagePlugin.PngImageFile):
for key, value in image.text.items():
try:
character_info = json.loads(decode_base64(value))
if character_info:
return character_info
except:
continue
return None
def decode_base64(encoded_string):
# Convert the string to bytes if it's not already
if isinstance(encoded_string, str):
encoded_bytes = encoded_string.encode('ascii')
else:
encoded_bytes = encoded_string
# Decode the Base64 bytes
decoded_bytes = base64.b64decode(encoded_bytes)
# Try to convert the result to a string, assuming UTF-8 encoding
try:
decoded_string = decoded_bytes.decode('utf-8')
return decoded_string
except UnicodeDecodeError:
# If it's not valid UTF-8 text, return the raw bytes
return decoded_bytes
def remove_list_elements(list1, *args):
for target in args:
if isinstance(target,list) or isinstance(target,dict):
list1 = [i for i in list1 if i not in target]
else:
list1 = [i for i in list1 if i != target]
return list1
def extract_html_content(html):
from bs4 import BeautifulSoup
soup = BeautifulSoup(html, "html.parser")
content_div = soup.find("div", {"id": "content"})
if not content_div:
return ""
paragraphs = []
for div in content_div.find_all("div"):
paragraphs.append(div.get_text(strip=True))
main_content = "\n\n".join(paragraphs)
return main_content
def load_text_file(path):
with open(path,"r",encoding="utf-8") as f:
text = f.read()
return text
def save_text_file(path,target):
with open(path,"w",encoding="utf-8") as f:
text = f.write(target)
def load_json_file(path):
with open(path,"r",encoding="utf-8") as f:
return json.load(f)
def save_json_file(path,target):
dir_name = os.path.dirname(path)
if not os.path.exists(dir_name):
os.makedirs(dir_name)
with open(path,"w",encoding="utf-8") as f:
json.dump(target, f, ensure_ascii=False,indent=True)
def load_jsonl_file(path):
data = []
with open(path,"r",encoding="utf-8") as f:
for line in f:
data.append(json.loads(line))
return data
def save_jsonl_file(path,target):
with open(path, "w",encoding="utf-8") as f:
for row in target:
print(json.dumps(row, ensure_ascii=False), file=f)
def split_text_by_max_words(text: str, max_words: int = 30):
segments = []
current_segment = []
current_length = 0
lines = text.splitlines()
for line in lines:
words_in_line = len(line)
current_segment.append(line + '\n')
current_length += words_in_line
if current_length + words_in_line > max_words:
segments.append(''.join(current_segment))
current_segment = []
current_length = 0
if current_segment:
segments.append(''.join(current_segment))
return segments
def lang_detect(text):
import re
def count_chinese_characters(text):
# 使用正则表达式匹配所有汉字字符
chinese_chars = re.findall(r'[\u4e00-\u9fff]', text)
return len(chinese_chars)
if count_chinese_characters(text) > len(text) * 0.05:
lang = 'zh'
else:
lang = 'en'
return lang
def dict_to_str(dic):
res = ""
for key in dic:
res += f"{key}: {dic[key]};"
return res
def count_tokens_num(string, encoding_name = "cl100k_base"):
encoding = tiktoken.get_encoding(encoding_name)
num_tokens = len(encoding.encode(string))
return num_tokens
def json_parser(output):
output = output.replace("\n", "")
output = output.replace("\t", "")
if "{" not in output:
output = "{" + output
if "}" not in output:
output += "}"
pattern = r'\{.*\}'
matches = re.findall(pattern, output, re.DOTALL)
try:
parsed_json = eval(matches[0])
except:
try:
parsed_json = json.loads(matches[0])
except json.JSONDecodeError:
try:
detail = re.search(r'"detail":\s*(.+?)\s*}', matches[0]).group(1)
detail = f"\"{detail}\""
new_output = re.sub(r'"detail":\s*(.+?)\s*}', f"\"detail\":{detail}}}", matches[0])
parsed_json = json.loads(new_output)
except Exception as e:
raise ValueError("No valid JSON found in the input string")
return parsed_json
def action_detail_decomposer(detail):
thoughts = re.findall(r'【(.*?)】', detail)
actions = re.findall(r'((.*?))', detail)
dialogues = re.findall(r'「(.*?)」', detail)
return thoughts,actions,dialogues
def conceal_thoughts(detail):
text = re.sub(r'【.*?】', '', detail)
text = re.sub(r'\[.*?\]', '', text)
return text
def extract_first_number(text):
match = re.search(r'\b\d+(?:\.\d+)?\b', text)
return int(match.group()) if match else None
def check_role_code_availability(role_code,role_file_dir):
for path in get_grandchild_folders(role_file_dir):
if role_code in path:
return True
return False
def get_grandchild_folders(root_folder):
folders = []
for resource in os.listdir(root_folder):
subpath = os.path.join(root_folder,resource)
for folder_name in os.listdir(subpath):
folder_path = os.path.join(subpath, folder_name)
folders.append(folder_path)
return folders
def get_child_folders(root_folder):
folders = []
for resource in os.listdir(root_folder):
path = os.path.join(root_folder,resource)
if os.path.isdir(path):
folders.append(path)
return folders
def get_child_paths(root_folder):
paths = []
for resource in os.listdir(root_folder):
path = os.path.join(root_folder,resource)
if os.path.isfile(path):
paths.append(path)
return paths
def get_first_directory(path):
try:
for item in os.listdir(path):
full_path = os.path.join(path, item)
if os.path.isdir(full_path):
return full_path
return None
except Exception as e:
print(f"Error: {e}")
return None
def find_files_with_suffix(directory, suffix):
matched_files = []
for root, dirs, files in os.walk(directory): # 遍历目录及其子目录
for file in files:
if file.endswith(suffix): # 检查文件后缀
matched_files.append(os.path.join(root, file)) # 将符合条件的文件路径加入列表
return matched_files
def remove_element_with_probability(lst, threshold=3, probability=0.2):
# 确保列表不为空
if len(lst) > threshold and random.random() < probability:
# 随机选择一个元素的索引
index = random.randint(0, len(lst) - 1)
# 删除该索引位置的元素
lst.pop(index)
return lst
def count_token_num(text):
from transformers import GPT2TokenizerFast
tokenizer = GPT2TokenizerFast.from_pretrained('gpt2')
return len(tokenizer.encode(text))
def get_cost(model_name,prompt,output):
input_price=0
output_price=0
if model_name.startswith("gpt-4"):
input_price=10
output_price=30
elif model_name.startswith("gpt-3.5"):
input_price=0.5
output_price=1.5
return input_price*count_token_num(prompt)/1000000 + output_price * count_token_num(output)/1000000
def is_image(filepath):
if not os.path.isfile(filepath):
return False
valid_image_extensions = ['.jpg', '.jpeg', '.png', '.gif', '.bmp', '.tiff','.webp']
file_extension = os.path.splitext(filepath)[1].lower()
# 判断扩展名是否在有效图片扩展名列表中
if file_extension in valid_image_extensions:
return True
return False
def clean_collection_name(name: str) -> str:
cleaned_name = name.replace(' ', '_')
cleaned_name = cleaned_name.replace('.', '_')
if not all(ord(c) < 128 for c in cleaned_name):
encoded = base64.b64encode(cleaned_name.encode('utf-8')).decode('ascii')
encoded = encoded[:60] if len(encoded) > 60 else encoded
valid_name = f"mem_{encoded}"
else:
valid_name = cleaned_name
valid_name = re.sub(r'[^a-zA-Z0-9_-]', '-', valid_name)
valid_name = re.sub(r'\.\.+', '-', valid_name)
valid_name = re.sub(r'^[^a-zA-Z0-9]+', '', valid_name) # 移除开头非法字符
valid_name = re.sub(r'[^a-zA-Z0-9]+$', '', valid_name)
return valid_name
cache_sign = True
cache = None
def cached(func):
def wrapper(*args,**kwargs):
global cache
cache_path = "bw_cache.pkl"
if cache == None:
if not os.path.exists(cache_path):
cache = {}
else:
cache = pickle.load(open(cache_path, 'rb'))
key = (func.__name__, str([args[0].role_code, args[0].__class__, args[0].llm_name , args[0].history]), str(kwargs.items()))
if (cache_sign and key in cache and cache[key] not in [None, '[TOKEN LIMIT]']) :
return cache[key]
else:
result = func(*args, **kwargs)
if result != 'busy' and result != None:
cache[key] = result
pickle.dump(cache, open(cache_path, 'wb'))
return result
return wrapper |