import os import sys import numpy as np import torch from diffusers import FlowMatchEulerDiscreteScheduler from omegaconf import OmegaConf from PIL import Image from transformers import AutoTokenizer current_file_path = os.path.abspath(__file__) project_roots = [os.path.dirname(current_file_path), os.path.dirname(os.path.dirname(current_file_path)), os.path.dirname(os.path.dirname(os.path.dirname(current_file_path)))] for project_root in project_roots: sys.path.insert(0, project_root) if project_root not in sys.path else None from cogvideox.models import (AutoencoderKLWan, CLIPModel, WanT5EncoderModel, WanTransformer3DModel) from cogvideox.pipeline import WanFunInpaintPipeline from cogvideox.utils.fp8_optimization import (convert_model_weight_to_float8, replace_parameters_by_name, convert_weight_dtype_wrapper) from cogvideox.utils.lora_utils import merge_lora, unmerge_lora from cogvideox.utils.utils import (filter_kwargs, get_image_to_video_latent, save_videos_grid) # GPU memory mode, which can be choosen in [model_cpu_offload, model_cpu_offload_and_qfloat8, sequential_cpu_offload]. # model_cpu_offload means that the entire model will be moved to the CPU after use, which can save some GPU memory. # # model_cpu_offload_and_qfloat8 indicates that the entire model will be moved to the CPU after use, # and the transformer model has been quantized to float8, which can save more GPU memory. # # sequential_cpu_offload means that each layer of the model will be moved to the CPU after use, # resulting in slower speeds but saving a large amount of GPU memory. GPU_memory_mode = "sequential_cpu_offload" # Config and model path config_path = "config/wan2.1/wan_civitai.yaml" # model path model_name = "models/Diffusion_Transformer/Wan2.1-Fun-1.3B-InP" # Choose the sampler in "Euler" "Euler A" "DPM++" "PNDM" and "DDIM" sampler_name = "Flow" # Load pretrained model if need transformer_path = None vae_path = None lora_path = None # Other params sample_size = [480, 832] video_length = 81 fps = 16 # Use torch.float16 if GPU does not support torch.bfloat16 # ome graphics cards, such as v100, 2080ti, do not support torch.bfloat16 weight_dtype = torch.bfloat16 # If you want to generate from text, please set the validation_image_start = None and validation_image_end = None validation_image_start = "asset/1.png" validation_image_end = None # prompts prompt = "一只棕褐色的狗正摇晃着脑袋,坐在一个舒适的房间里的浅色沙发上。沙发看起来柔软而宽敞,为这只活泼的狗狗提供了一个完美的休息地点。在狗的后面,靠墙摆放着一个架子,架子上挂着一幅精美的镶框画,画中描绘着一些美丽的风景或场景。画框周围装饰着粉红色的花朵,这些花朵不仅增添了房间的色彩,还带来了一丝自然和生机。房间里的灯光柔和而温暖,从天花板上的吊灯和角落里的台灯散发出来,营造出一种温馨舒适的氛围。整个空间给人一种宁静和谐的感觉,仿佛时间在这里变得缓慢而美好。" negative_prompt = "色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走" guidance_scale = 6.0 seed = 43 num_inference_steps = 50 lora_weight = 0.55 save_path = "samples/wan-videos-fun-i2v" config = OmegaConf.load(config_path) transformer = WanTransformer3DModel.from_pretrained( os.path.join(model_name, config['transformer_additional_kwargs'].get('transformer_subpath', 'transformer')), transformer_additional_kwargs=OmegaConf.to_container(config['transformer_additional_kwargs']), low_cpu_mem_usage=True, torch_dtype=weight_dtype, ) if transformer_path is not None: print(f"From checkpoint: {transformer_path}") if transformer_path.endswith("safetensors"): from safetensors.torch import load_file, safe_open state_dict = load_file(transformer_path) else: state_dict = torch.load(transformer_path, map_location="cpu") state_dict = state_dict["state_dict"] if "state_dict" in state_dict else state_dict m, u = transformer.load_state_dict(state_dict, strict=False) print(f"missing keys: {len(m)}, unexpected keys: {len(u)}") # Get Vae vae = AutoencoderKLWan.from_pretrained( os.path.join(model_name, config['vae_kwargs'].get('vae_subpath', 'vae')), additional_kwargs=OmegaConf.to_container(config['vae_kwargs']), ).to(weight_dtype) if vae_path is not None: print(f"From checkpoint: {vae_path}") if vae_path.endswith("safetensors"): from safetensors.torch import load_file, safe_open state_dict = load_file(vae_path) else: state_dict = torch.load(vae_path, map_location="cpu") state_dict = state_dict["state_dict"] if "state_dict" in state_dict else state_dict m, u = vae.load_state_dict(state_dict, strict=False) print(f"missing keys: {len(m)}, unexpected keys: {len(u)}") # Get Tokenizer tokenizer = AutoTokenizer.from_pretrained( os.path.join(model_name, config['text_encoder_kwargs'].get('tokenizer_subpath', 'tokenizer')), ) # Get Text encoder text_encoder = WanT5EncoderModel.from_pretrained( os.path.join(model_name, config['text_encoder_kwargs'].get('text_encoder_subpath', 'text_encoder')), additional_kwargs=OmegaConf.to_container(config['text_encoder_kwargs']), ).to(weight_dtype) text_encoder = text_encoder.eval() # Get Clip Image Encoder clip_image_encoder = CLIPModel.from_pretrained( os.path.join(model_name, config['image_encoder_kwargs'].get('image_encoder_subpath', 'image_encoder')), ).to(weight_dtype) clip_image_encoder = clip_image_encoder.eval() # Get Scheduler Choosen_Scheduler = scheduler_dict = { "Flow": FlowMatchEulerDiscreteScheduler, }[sampler_name] scheduler = Choosen_Scheduler( **filter_kwargs(Choosen_Scheduler, OmegaConf.to_container(config['scheduler_kwargs'])) ) # Get Pipeline pipeline = WanFunInpaintPipeline( transformer=transformer, vae=vae, tokenizer=tokenizer, text_encoder=text_encoder, scheduler=scheduler, clip_image_encoder=clip_image_encoder ) if GPU_memory_mode == "sequential_cpu_offload": replace_parameters_by_name(transformer, ["modulation",], device="cuda") transformer.freqs = transformer.freqs.to(device="cuda") pipeline.enable_sequential_cpu_offload() elif GPU_memory_mode == "model_cpu_offload_and_qfloat8": convert_model_weight_to_float8(transformer, exclude_module_name=["modulation",]) convert_weight_dtype_wrapper(transformer, weight_dtype) pipeline.enable_model_cpu_offload() else: pipeline.enable_model_cpu_offload() generator = torch.Generator(device="cuda").manual_seed(seed) if lora_path is not None: pipeline = merge_lora(pipeline, lora_path, lora_weight) with torch.no_grad(): video_length = int((video_length - 1) // vae.config.temporal_compression_ratio * vae.config.temporal_compression_ratio) + 1 if video_length != 1 else 1 latent_frames = (video_length - 1) // vae.config.temporal_compression_ratio + 1 input_video, input_video_mask, clip_image = get_image_to_video_latent(validation_image_start, validation_image_end, video_length=video_length, sample_size=sample_size) sample = pipeline( prompt, num_frames = video_length, negative_prompt = negative_prompt, height = sample_size[0], width = sample_size[1], generator = generator, guidance_scale = guidance_scale, num_inference_steps = num_inference_steps, video = input_video, mask_video = input_video_mask, clip_image = clip_image, ).videos if lora_path is not None: pipeline = unmerge_lora(pipeline, lora_path, lora_weight) if not os.path.exists(save_path): os.makedirs(save_path, exist_ok=True) index = len([path for path in os.listdir(save_path)]) + 1 prefix = str(index).zfill(8) if video_length == 1: video_path = os.path.join(save_path, prefix + ".png") image = sample[0, :, 0] image = image.transpose(0, 1).transpose(1, 2) image = (image * 255).numpy().astype(np.uint8) image = Image.fromarray(image) image.save(video_path) else: video_path = os.path.join(save_path, prefix + ".mp4") save_videos_grid(sample, video_path, fps=fps)