bubbliiiing
Update Space
a5c8285
import os
import sys
import numpy as np
import torch
from diffusers import FlowMatchEulerDiscreteScheduler
from omegaconf import OmegaConf
from PIL import Image
current_file_path = os.path.abspath(__file__)
project_roots = [os.path.dirname(current_file_path), os.path.dirname(os.path.dirname(current_file_path)), os.path.dirname(os.path.dirname(os.path.dirname(current_file_path)))]
for project_root in project_roots:
sys.path.insert(0, project_root) if project_root not in sys.path else None
from cogvideox.models import (AutoencoderKLWan, WanT5EncoderModel, AutoTokenizer,
WanTransformer3DModel)
from cogvideox.pipeline import WanPipeline
from cogvideox.utils.fp8_optimization import (convert_model_weight_to_float8, replace_parameters_by_name,
convert_weight_dtype_wrapper)
from cogvideox.utils.lora_utils import merge_lora, unmerge_lora
from cogvideox.utils.utils import (filter_kwargs, get_image_to_video_latent,
save_videos_grid)
# GPU memory mode, which can be choosen in [model_cpu_offload, model_cpu_offload_and_qfloat8, sequential_cpu_offload].
# model_cpu_offload means that the entire model will be moved to the CPU after use, which can save some GPU memory.
#
# model_cpu_offload_and_qfloat8 indicates that the entire model will be moved to the CPU after use,
# and the transformer model has been quantized to float8, which can save more GPU memory.
#
# sequential_cpu_offload means that each layer of the model will be moved to the CPU after use,
# resulting in slower speeds but saving a large amount of GPU memory.
GPU_memory_mode = "sequential_cpu_offload"
# Config and model path
config_path = "config/wan2.1/wan_civitai.yaml"
# model path
model_name = "models/Diffusion_Transformer/Wan2.1-T2V-14B"
# Choose the sampler in "Euler" "Euler A" "DPM++" "PNDM" and "DDIM"
sampler_name = "Flow"
# Load pretrained model if need
transformer_path = None
vae_path = None
lora_path = None
# Other params
sample_size = [480, 832]
video_length = 81
fps = 16
# Use torch.float16 if GPU does not support torch.bfloat16
# ome graphics cards, such as v100, 2080ti, do not support torch.bfloat16
weight_dtype = torch.bfloat16
prompt = "一只棕褐色的狗正摇晃着脑袋,坐在一个舒适的房间里的浅色沙发上。沙发看起来柔软而宽敞,为这只活泼的狗狗提供了一个完美的休息地点。在狗的后面,靠墙摆放着一个架子,架子上挂着一幅精美的镶框画,画中描绘着一些美丽的风景或场景。画框周围装饰着粉红色的花朵,这些花朵不仅增添了房间的色彩,还带来了一丝自然和生机。房间里的灯光柔和而温暖,从天花板上的吊灯和角落里的台灯散发出来,营造出一种温馨舒适的氛围。整个空间给人一种宁静和谐的感觉,仿佛时间在这里变得缓慢而美好。"
negative_prompt = "色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走"
guidance_scale = 6.0
seed = 43
num_inference_steps = 50
lora_weight = 0.55
save_path = "samples/wan-videos-t2v"
config = OmegaConf.load(config_path)
transformer = WanTransformer3DModel.from_pretrained(
os.path.join(model_name, config['transformer_additional_kwargs'].get('transformer_subpath', 'transformer')),
transformer_additional_kwargs=OmegaConf.to_container(config['transformer_additional_kwargs']),
low_cpu_mem_usage=True,
torch_dtype=weight_dtype,
)
if transformer_path is not None:
print(f"From checkpoint: {transformer_path}")
if transformer_path.endswith("safetensors"):
from safetensors.torch import load_file, safe_open
state_dict = load_file(transformer_path)
else:
state_dict = torch.load(transformer_path, map_location="cpu")
state_dict = state_dict["state_dict"] if "state_dict" in state_dict else state_dict
m, u = transformer.load_state_dict(state_dict, strict=False)
print(f"missing keys: {len(m)}, unexpected keys: {len(u)}")
# Get Vae
vae = AutoencoderKLWan.from_pretrained(
os.path.join(model_name, config['vae_kwargs'].get('vae_subpath', 'vae')),
additional_kwargs=OmegaConf.to_container(config['vae_kwargs']),
).to(weight_dtype)
if vae_path is not None:
print(f"From checkpoint: {vae_path}")
if vae_path.endswith("safetensors"):
from safetensors.torch import load_file, safe_open
state_dict = load_file(vae_path)
else:
state_dict = torch.load(vae_path, map_location="cpu")
state_dict = state_dict["state_dict"] if "state_dict" in state_dict else state_dict
m, u = vae.load_state_dict(state_dict, strict=False)
print(f"missing keys: {len(m)}, unexpected keys: {len(u)}")
# Get Tokenizer
tokenizer = AutoTokenizer.from_pretrained(
os.path.join(model_name, config['text_encoder_kwargs'].get('tokenizer_subpath', 'tokenizer')),
)
# Get Text encoder
text_encoder = WanT5EncoderModel.from_pretrained(
os.path.join(model_name, config['text_encoder_kwargs'].get('text_encoder_subpath', 'text_encoder')),
additional_kwargs=OmegaConf.to_container(config['text_encoder_kwargs']),
).to(weight_dtype)
# Get Scheduler
Choosen_Scheduler = scheduler_dict = {
"Flow": FlowMatchEulerDiscreteScheduler,
}[sampler_name]
scheduler = Choosen_Scheduler(
**filter_kwargs(Choosen_Scheduler, OmegaConf.to_container(config['scheduler_kwargs']))
)
# Get Pipeline
pipeline = WanPipeline(
transformer=transformer,
vae=vae,
tokenizer=tokenizer,
text_encoder=text_encoder,
scheduler=scheduler,
)
if GPU_memory_mode == "sequential_cpu_offload":
replace_parameters_by_name(transformer, ["modulation",], device="cuda")
transformer.freqs = transformer.freqs.to(device="cuda")
pipeline.enable_sequential_cpu_offload()
elif GPU_memory_mode == "model_cpu_offload_and_qfloat8":
convert_model_weight_to_float8(transformer, exclude_module_name=["modulation",])
convert_weight_dtype_wrapper(transformer, weight_dtype)
pipeline.enable_model_cpu_offload()
else:
pipeline.enable_model_cpu_offload()
generator = torch.Generator(device="cuda").manual_seed(seed)
if lora_path is not None:
pipeline = merge_lora(pipeline, lora_path, lora_weight)
with torch.no_grad():
video_length = int((video_length - 1) // vae.config.temporal_compression_ratio * vae.config.temporal_compression_ratio) + 1 if video_length != 1 else 1
latent_frames = (video_length - 1) // vae.config.temporal_compression_ratio + 1
sample = pipeline(
prompt,
num_frames = video_length,
negative_prompt = negative_prompt,
height = sample_size[0],
width = sample_size[1],
generator = generator,
guidance_scale = guidance_scale,
num_inference_steps = num_inference_steps,
).videos
if lora_path is not None:
pipeline = unmerge_lora(pipeline, lora_path, lora_weight)
if not os.path.exists(save_path):
os.makedirs(save_path, exist_ok=True)
index = len([path for path in os.listdir(save_path)]) + 1
prefix = str(index).zfill(8)
if video_length == 1:
video_path = os.path.join(save_path, prefix + ".png")
image = sample[0, :, 0]
image = image.transpose(0, 1).transpose(1, 2)
image = (image * 255).numpy().astype(np.uint8)
image = Image.fromarray(image)
image.save(video_path)
else:
video_path = os.path.join(save_path, prefix + ".mp4")
save_videos_grid(sample, video_path, fps=fps)