File size: 9,513 Bytes
a5c8285
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import os
import sys

import numpy as np
import torch
from diffusers import FlowMatchEulerDiscreteScheduler
from omegaconf import OmegaConf
from PIL import Image
from transformers import AutoTokenizer

current_file_path = os.path.abspath(__file__)
project_roots = [os.path.dirname(current_file_path), os.path.dirname(os.path.dirname(current_file_path)), os.path.dirname(os.path.dirname(os.path.dirname(current_file_path)))]
for project_root in project_roots:
    sys.path.insert(0, project_root) if project_root not in sys.path else None

from cogvideox.models import (AutoencoderKLWan, CLIPModel, WanT5EncoderModel,
                              WanTransformer3DModel)
from cogvideox.pipeline import WanFunInpaintPipeline, WanFunPipeline
from cogvideox.utils.fp8_optimization import (convert_model_weight_to_float8, replace_parameters_by_name,
                                              convert_weight_dtype_wrapper)
from cogvideox.utils.lora_utils import merge_lora, unmerge_lora
from cogvideox.utils.utils import (filter_kwargs, get_image_to_video_latent,
                                   save_videos_grid)

# GPU memory mode, which can be choosen in [model_cpu_offload, model_cpu_offload_and_qfloat8, sequential_cpu_offload].
# model_cpu_offload means that the entire model will be moved to the CPU after use, which can save some GPU memory.
# 
# model_cpu_offload_and_qfloat8 indicates that the entire model will be moved to the CPU after use, 
# and the transformer model has been quantized to float8, which can save more GPU memory. 
# 
# sequential_cpu_offload means that each layer of the model will be moved to the CPU after use, 
# resulting in slower speeds but saving a large amount of GPU memory.
GPU_memory_mode     = "sequential_cpu_offload"

# Config and model path
config_path         = "config/wan2.1/wan_civitai.yaml"
# model path
model_name          = "models/Diffusion_Transformer/Wan2.1-Fun-14B-InP"

# Choose the sampler in "Euler" "Euler A" "DPM++" "PNDM" and "DDIM"
sampler_name        = "Flow"

# Load pretrained model if need
transformer_path    = None
vae_path            = None
lora_path           = None

# Other params
sample_size         = [480, 832]
video_length        = 81
fps                 = 16

# Use torch.float16 if GPU does not support torch.bfloat16
# ome graphics cards, such as v100, 2080ti, do not support torch.bfloat16
weight_dtype        = torch.bfloat16
prompt              = "一只棕褐色的狗正摇晃着脑袋,坐在一个舒适的房间里的浅色沙发上。沙发看起来柔软而宽敞,为这只活泼的狗狗提供了一个完美的休息地点。在狗的后面,靠墙摆放着一个架子,架子上挂着一幅精美的镶框画,画中描绘着一些美丽的风景或场景。画框周围装饰着粉红色的花朵,这些花朵不仅增添了房间的色彩,还带来了一丝自然和生机。房间里的灯光柔和而温暖,从天花板上的吊灯和角落里的台灯散发出来,营造出一种温馨舒适的氛围。整个空间给人一种宁静和谐的感觉,仿佛时间在这里变得缓慢而美好。"
negative_prompt     = "色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走"
guidance_scale      = 6.0
seed                = 43
num_inference_steps = 50
lora_weight         = 0.55
save_path           = "samples/wan-videos-fun-t2v"

config = OmegaConf.load(config_path)

transformer = WanTransformer3DModel.from_pretrained(
    os.path.join(model_name, config['transformer_additional_kwargs'].get('transformer_subpath', 'transformer')),
    transformer_additional_kwargs=OmegaConf.to_container(config['transformer_additional_kwargs']),
    low_cpu_mem_usage=True,
    torch_dtype=weight_dtype,
)

if transformer_path is not None:
    print(f"From checkpoint: {transformer_path}")
    if transformer_path.endswith("safetensors"):
        from safetensors.torch import load_file, safe_open
        state_dict = load_file(transformer_path)
    else:
        state_dict = torch.load(transformer_path, map_location="cpu")
    state_dict = state_dict["state_dict"] if "state_dict" in state_dict else state_dict

    m, u = transformer.load_state_dict(state_dict, strict=False)
    print(f"missing keys: {len(m)}, unexpected keys: {len(u)}")

# Get Vae
vae = AutoencoderKLWan.from_pretrained(
    os.path.join(model_name, config['vae_kwargs'].get('vae_subpath', 'vae')),
    additional_kwargs=OmegaConf.to_container(config['vae_kwargs']),
).to(weight_dtype)

if vae_path is not None:
    print(f"From checkpoint: {vae_path}")
    if vae_path.endswith("safetensors"):
        from safetensors.torch import load_file, safe_open
        state_dict = load_file(vae_path)
    else:
        state_dict = torch.load(vae_path, map_location="cpu")
    state_dict = state_dict["state_dict"] if "state_dict" in state_dict else state_dict

    m, u = vae.load_state_dict(state_dict, strict=False)
    print(f"missing keys: {len(m)}, unexpected keys: {len(u)}")

# Get Tokenizer
tokenizer = AutoTokenizer.from_pretrained(
    os.path.join(model_name, config['text_encoder_kwargs'].get('tokenizer_subpath', 'tokenizer')),
)

# Get Text encoder
text_encoder = WanT5EncoderModel.from_pretrained(
    os.path.join(model_name, config['text_encoder_kwargs'].get('text_encoder_subpath', 'text_encoder')),
    additional_kwargs=OmegaConf.to_container(config['text_encoder_kwargs']),
).to(weight_dtype)
text_encoder = text_encoder.eval()

if transformer.config.in_channels != vae.config.latent_channels:
    # Get Clip Image Encoder
    clip_image_encoder = CLIPModel.from_pretrained(
        os.path.join(model_name, config['image_encoder_kwargs'].get('image_encoder_subpath', 'image_encoder')),
    ).to(weight_dtype)
    clip_image_encoder = clip_image_encoder.eval()
else:
    clip_image_encoder = None
    clip_image_processor = None

# Get Scheduler
Choosen_Scheduler = scheduler_dict = {
    "Flow": FlowMatchEulerDiscreteScheduler,
}[sampler_name]
scheduler = Choosen_Scheduler(
    **filter_kwargs(Choosen_Scheduler, OmegaConf.to_container(config['scheduler_kwargs']))
)

if transformer.config.in_channels != vae.config.latent_channels:
    pipeline = WanFunInpaintPipeline(
        vae=vae,
        tokenizer=tokenizer,
        text_encoder=text_encoder,
        transformer=transformer,
        scheduler=scheduler,
        clip_image_encoder=clip_image_encoder,
    )
else:
    pipeline = WanFunPipeline(
        vae=vae,
        tokenizer=tokenizer,
        text_encoder=text_encoder,
        transformer=transformer,
        scheduler=scheduler,
    )
if GPU_memory_mode == "sequential_cpu_offload":
    replace_parameters_by_name(transformer, ["modulation",], device="cuda")
    transformer.freqs = transformer.freqs.to(device="cuda")
    pipeline.enable_sequential_cpu_offload()
elif GPU_memory_mode == "model_cpu_offload_and_qfloat8":
    convert_model_weight_to_float8(transformer, exclude_module_name=["modulation",])
    convert_weight_dtype_wrapper(transformer, weight_dtype)
    pipeline.enable_model_cpu_offload()
else:
    pipeline.enable_model_cpu_offload()

generator = torch.Generator(device="cuda").manual_seed(seed)

if lora_path is not None:
    pipeline = merge_lora(pipeline, lora_path, lora_weight)

with torch.no_grad():
    video_length = int((video_length - 1) // vae.config.temporal_compression_ratio * vae.config.temporal_compression_ratio) + 1 if video_length != 1 else 1
    latent_frames = (video_length - 1) // vae.config.temporal_compression_ratio + 1

    if transformer.config.in_channels != vae.config.latent_channels:
        input_video, input_video_mask, _ = get_image_to_video_latent(None, None, video_length=video_length, sample_size=sample_size)

        sample = pipeline(
            prompt, 
            num_frames = video_length,
            negative_prompt = negative_prompt,
            height      = sample_size[0],
            width       = sample_size[1],
            generator   = generator,
            guidance_scale = guidance_scale,
            num_inference_steps = num_inference_steps,

            video        = input_video,
            mask_video   = input_video_mask,
        ).videos
    else:
        sample = pipeline(
            prompt, 
            num_frames = video_length,
            negative_prompt = negative_prompt,
            height      = sample_size[0],
            width       = sample_size[1],
            generator   = generator,
            guidance_scale = guidance_scale,
            num_inference_steps = num_inference_steps,
        ).videos

if lora_path is not None:
    pipeline = unmerge_lora(pipeline, lora_path, lora_weight)

if not os.path.exists(save_path):
    os.makedirs(save_path, exist_ok=True)

index = len([path for path in os.listdir(save_path)]) + 1
prefix = str(index).zfill(8)

if video_length == 1:
    video_path = os.path.join(save_path, prefix + ".png")

    image = sample[0, :, 0]
    image = image.transpose(0, 1).transpose(1, 2)
    image = (image * 255).numpy().astype(np.uint8)
    image = Image.fromarray(image)
    image.save(video_path)
else:
    video_path = os.path.join(save_path, prefix + ".mp4")
    save_videos_grid(sample, video_path, fps=fps)