alexdong commited on
Commit
6b2cd1b
·
verified ·
1 Parent(s): 7765238

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +23 -4
app.py CHANGED
@@ -1,7 +1,26 @@
1
  import gradio as gr
 
2
 
3
- def query_reformulation(input):
4
- return "Hello " + name + "!!"
 
 
5
 
6
- demo = gr.Interface(fn=query_reformulation, inputs="text", outputs="text")
7
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
+ from transformers import T5Tokenizer, T5ForConditionalGeneration
3
 
4
+ # Load the tokenizer and model from Hugging Face
5
+ model_name = 'alexdong/query-reformulation-knowledge-base-t5-small'
6
+ tokenizer = T5Tokenizer.from_pretrained(model_name)
7
+ model = T5ForConditionalGeneration.from_pretrained(model_name)
8
 
9
+ # Define the function that will be run for every input
10
+ def generate_text(input_text):
11
+ input_ids = tokenizer(f"reformulate: {input_text}", return_tensors="pt").input_ids
12
+ output_ids = model.generate(input_ids, max_length=50)
13
+ decoded_output = tokenizer.decode(output_ids[0], skip_special_tokens=True)
14
+ return decoded_output
15
+
16
+ # Define the Gradio interface
17
+ iface = gr.Interface(
18
+ fn=generate_text,
19
+ inputs="text",
20
+ outputs="text",
21
+ title="Query Reformulation",
22
+ description="Enter a search query to see how the model rewrites it into RAG friendly subqueries.", # Description
23
+ )
24
+
25
+ # Display the interface
26
+ iface.launch()