File size: 2,734 Bytes
73f9174
95f7ff3
b6827ba
50639ab
2e937f5
bcda593
2e937f5
 
57d46c6
 
 
 
b6827ba
d031db7
8ac912b
b6827ba
73f9174
 
 
 
 
 
 
 
 
 
8ac912b
 
b6827ba
8ac912b
 
b11c8cd
d031db7
 
 
 
 
 
 
 
bcda593
b6827ba
 
d031db7
 
b6827ba
 
 
 
bcda593
95f7ff3
8ac912b
95f7ff3
 
 
 
 
8ac912b
 
 
d031db7
 
 
8ac912b
d031db7
8ac912b
 
95f7ff3
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import os
import requests
from bs4 import BeautifulSoup

api_token = os.environ.get("TOKEN")
API_URL = "https://api-inference.huggingface.co/models/meta-llama/Llama-2-7b-chat-hf"
headers = {"Authorization": f"Bearer {api_token}"}

def query(payload):
    response = requests.post(API_URL, headers=headers, json=payload)
    return response.json()

def analyze_sentiment(pl7_text):
    prompt = f'''<|begin_of_text|>
<|start_header_id|>system<|end_header_id|>
You're going to deeply analyze the text I'm going to give you and you're only going to tell me which category it belongs to by answering only the words that correspond to the following categories:
For posts that talk about chat models/LLM, return "Chatmodel/LLM"
For posts that talk about image generation models, return "image_generation"
For texts that ask for information from the community, return "questions"
For posts about fine-tuning or model adjustment, return "fine_tuning"
For posts related to ethics and bias in AI, return "ethics_bias"
For posts about datasets and data preparation, return "datasets"
For posts about tools and libraries, return "tools_libraries"
For posts containing tutorials and guides, return "tutorials_guides"
For posts about debugging and problem-solving, return "debugging"
Respond only with the category name, without any additional explanation or text.
<|eot_id|>
<|start_header_id|>user<|end_header_id|>
{pl7_text}
<|eot_id|>
<|start_header_id|>assistant<|end_header_id|>
'''
    
    print("Sending the following prompt to the API:")
    print(prompt)
    
    output = query({"inputs": prompt})
    
    print("\nAPI Response:")
    print(output)
    
    if isinstance(output, list) and len(output) > 0:
        generated_text = output[0].get('generated_text', '')
        print("\nGenerated Text:")
        print(generated_text)
        # Extract the last non-empty line as the category
        lines = [line.strip().lower() for line in generated_text.split('\n') if line.strip()]
        if lines:
            return lines[-1]
    return "unknown"

# Fetch a single post
url = 'https://huggingface.co/posts'
response = requests.get(url)

if response.status_code == 200:
    soup = BeautifulSoup(response.content, 'html.parser')
    pl7_element = soup.find(class_='pl-7')
    if pl7_element:
        pl7_text = pl7_element.text.strip()
        print("Post content (first 100 characters):")
        print(pl7_text[:100] + "..." if len(pl7_text) > 100 else pl7_text)
        print("\nAnalyzing post...")
        sentiment = analyze_sentiment(pl7_text)
        print(f"\nSentiment category: {sentiment}")
    else:
        print("No post found with class 'pl-7'")
else:
    print(f"Error {response.status_code} when retrieving {url}")